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Preface

The series of workshops on Machine Learning for Multimodal Interaction (MLMI)
celebrates this year its fifth anniversary. On this occasion, a number of innovations
have been introduced in the reviewing and publication procedures, while keeping
the focus on the same scientific topics.

For the first time, the reviewing process has been adapted in order to pre-
pare the proceedings in time for the workshop, held on September 8–10, 2008, in
Utrecht, The Netherlands. The 47 submissions received by the Program Com-
mittee were first reviewed by three PC members each, and then advocated by
an Area Chair. Overall, 12 oral presentations (ca. 25% of all submissions) and
15 poster presentations were selected. Authors were given one month to revise
their papers according to the reviews, and the final versions were briefly checked
by the two Program Co-chairs. Both types of presentation have been give equal
space in the present proceedings.

The 32 papers gathered in this volume cover a wide range of topics re-
lated to human-human communication modeling and processing, as well as to
human-computer interaction, using several communication modalities. A signif-
icant number of papers focus on the analysis of non-verbal communication cues,
such as the expression of emotions, laughter, face turning, or gestures, which
demonstrates a growing interest for social signal processing. Yet, another large
set of papers targets the analysis of communicative content, with a focus on the
abstraction of information from meetings in the form of summaries, action items,
or dialogue acts. Other topics presented at MLMI 2008 include audio-visual scene
analysis, speech processing, interactive systems and applications.

A special session on user requirements and evaluation of multimodal meeting
browsers/assistants was organized, with a separate submission track, resulting
in the five papers gathered in the last part of these proceedings. The goal of the
session was to put together the lessons learned from several large projects in-
volving meeting technology – partly the same projects that launched the MLMI
series. The session included short presentations of user requirements and evalu-
ation studies, introduced by a related keynote talk, and followed by a plenary
discussion.

MLMI 2008 featured four keynote talks, focusing on theory, applications, and
evaluation. The organizers would like to express their gratitude to the invited
speakers: Maja Pantic, from the Imperial College London and the University of
Twente; Catherine Pelachaud, from the Montreuil University of Technology and
INRIA Rocquencourt; Mark Sanderson, from the University of Sheffield; and
Stephen Von Rump, CEO of HeadThere, Inc., San Francisco, CA.

The number of MLMI satellite events keeps growing every year. The fol-
lowing events were associated to MLMI 2008: the AMI Career Day, an op-
portunity for young scientists to talk to representatives of companies working
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on meeting technology and prepare the next steps of their careers; the above-
mentioned special session on user requirements and evaluation of multimodal
meeting browsers/assistants; a workshop on the evaluation of automatic speech
recognition systems for Dutch; an interproject meeting on the evaluation of
space-time audio processing; and a student poster session.

To conclude, we would like to warmly thank all the members of the Program
Committee, the Area Chairs, and the people involved in the workshop organiza-
tion, in particular David van Leeuwen (TNO). We are grateful to Hervé Bourlard
(Idiap Research Institute) and Steve Renals (University of Edinburgh) for their
constant support. MLMI 2008 acknowledges sponsoring from the AMIDA Inte-
grated Project, which is funded by the European Commission under the Infor-
mation Society Technologies priority of the sixth Framework Program, and from
the IM2 National Center of Competence in Research, which is funded by the
Swiss National Science Foundation.

June 2008 Andrei Popescu-Belis
Rainer Stiefelhagen
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Visual Focus of Attention in Dynamic Meeting

Scenarios

Michael Voit1 and Rainer Stiefelhagen2

1 Fraunhofer IITB, Karlsruhe
michael.voit@iitb.fraunhofer.de

2 Interactive Systems Labs, Universität Karlsruhe (TH)
stiefel@ira.uka.de

Abstract. This paper presents our data collection and first evaluations
on estimating visual focus of attention during dynamic meeting scenes.
We included moving focus targets and unforeseen interruptions in each
meeting, by guiding each meeting along a predefined script of events that
three participating actors were instructed to follow. Further meeting at-
tendees were not introduced to upcoming actions or the general purpose
of the meeting, hence we were able to capture their natural focus changes
within this predefined dynamic scenario with an extensive setup of both
visual and acoustical sensors throughout our smart room. We present an
adaptive approach to estimate visual focus of attention based on head
orientation under these unforeseen conditions and show, that our system
achieves an overall recognition rate of 59%, compared to 9% less when
choosing the best matching focus target directly from the observed head
orientation angles.

1 Introduction

Smart rooms, or smart spaces, proclaim proactive computer services in unob-
trusive sensor environments. Knowing at all times, who enters the room, who
interacts with whom and where all people reside and look at, allows interfaces to
adapt for personal needs and input modalities to relate to context and semantics.
Research in this area covers both the fundamental fields of (multiview) visual
and acoustical perception, such as face identification [1], gaze recognition [2,3,4],
speech detection [5] and speaker localization [6] or audio-visual multi-person
tracking and identification [7,8], as well as the combination of all modalities in
order to allow higher-level observations and summarizations, as for example in
transcribing meetings [9] or analyzing floor control and interaction patterns [9].
One particular cue for modeling (inter-)actions between a group of people or
understanding actions and occupations of observed meeting participants and
group members, is to understand their visual focus and deduce the respective
attentional target they focus on. By means of recognizing objects, colleagues
are working on together, or the recognition of a group’s joint attention towards
a specific speaker during an observed lecture, smart room systems obtain one
further cue to modeling a scene’s context and individual behavior.

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Voit and R. Stiefelhagen

To follow eye-gaze and obtain knowledge about one’s viewing direction, head
orientation usually acts as an approximation to allow non-intrusive sensor setups
as applied in our described environment. Due to individual head turning styles,
gaze and head orientation tend to differ and a direct interpretation from observed
head rotations to a discrete set of focus targets is not always possible as studies
and evaluations show [10,11,12]. Measured head rotations are therefore mostly
used to describe individually shifted means around predefined focus targets,
which, recently in combination with multimodal cues such as presentational slide
changes or speech activity [13] both increase recognition rate and allow analysis
of group activities or role models during meetings, but still limit the applicational
area to a predefined set of non-moving focus targets around a table.

In [14], we extended our system to estimate visual focus of attention from
monocular views during recorded meetings [12] to using multi-view head orien-
tation in order to allow for a sensorless work area on the meeting table. Applying
the motivation for unrestricted behavior and dynamic scenes to the recorded set-
tings and peoples’ focus, we now collected a new dataset, in which a number of
scripted events - such as people entering and leaving the room, or phones ringing
in the room - were introduced, in order to provoke attention shifts of the meeting
participants from their ongoing work. Hence, all meetings contain a varying set
of participants and different seating positions as well as the introduction of new
objects and moving targets.

2 Dataset

The dataset we recorded consists of 10 meeting videos in total. Each video is
approximately 10 min. long and starts with each participant entering the room
and finally ends with all persons leaving the room again. For introducing dynamic
events and behavior and ensuring the same over all videos, each video consists
of three acting participants, that followed a predefined script and a varying
number (one or two) of unaware persons, whose attention was to be distracted
by different kinds of interruptions, unforeseen persons walking through the room
in different trajectories or newly introduced objects.

2.1 Sensor Setup

The sensor setup we recorded with, consisted of 4 fixed cameras in the upper
corners of the room, each recording with a resolution of 640× 480 pixels and 15
frames per second. The purpose of these cameras is to obtain a coarse view of the
whole room, for allowing people to move and behave as naturally as possible and
walk around and interact with each other without being limited by a predefined
setup and a restricted sensor range. The camera array was extended with a
panoramic view from a fisheye lens camera that was installed on the ceiling (same
specifications). For a complete recording of the scenery and its context, audio
was recorded by means of four T-shaped microphone arrays, each installed on
every wall of the room (northern, western, southern and eastern side), allowing
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Fig. 1. Example scene of one meeting video. Shown are two out of four camera views
from the room’s upper corners and the panoramic view, captured from the ceiling.
In this scene, interrupting person P04 passes the meeting-table towards the entrance
door and walks in between the projection screen and person P00 sitting in front of it,
working on his notebook.

for the inclusion of audio source localization, and one table-top microphone for
speech recognition and acoustical context modelling.

2.2 Dynamic Meetings

We defined a predefined set of events in a script, that were initiated and followed
by all actors in each recorded meeting. The remaining participants were unaware
of what was to happen during the recordings, hence, their observed reaction was
spontaneous and unplanned. Each meeting consisted of three acting participants
and one or two participants that were not aware of the scripted events and
the exact purpose of the data collection. To obtain groundtruth information
about head orientation and position, one of the unaware persons was wearing a
magnetic motion sensor (Flock of Birds, Ascension Technologies) on top of his
or her head, calibrated along the room’s (hence global) coordinate system. All
persons were tagged with respect to their seating position in counter-clockwise
order around the meeting table and/or acting role during the meeting: The
person sitting at the table’s northern edge was named P00, the person to the
west P01, the person at the southern edge, always wearing the magnetic sensor
was named P02 and the person at the eastern edge P03. The fourth person, called
P04 was chosen to interrupt the meeting from time to time, hence entering and
leaving the room multiple times and not being bound to one particular seat
around the table. The seating positions and roles of all acting persons were
changed and rotated during the recordings to prevent repetitive patterns.

In general, the used script followed the particulars given below:

– Person P02 is to be seated beforehand, calibrated along the room’s coordi-
nate system. Persons P00, P01 and P03 enter the room successively, meet
and greet at the table before sitting down.

– All participants start a discussion about ’Computer Vision’ in general and
a possible reason for the current meeting.

– The interrupting person P04 enters the room, recognizes the meeting and
spontaneously grabs a nearby chair to join it. One of the yet seated par-
ticipants needs to make room for the additional member, hence his or her
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seating position changes - a new person is therefore added around the table,
the seating positions disturbed temporarily.

– After a small talk, person P04 stands up, moves his or her chair and leaves
the room on either of two possible ways around the table.

– One acting member (P00, P01 or P03) stands up, walks towards the projec-
tion screen and starts to give a presentation. Thereby, the presenter gesticu-
lates in front of the screen, changing position in front of it and explains the
bullet points listed on the presented slide. All remaining participants were
instructed to make notes on the notebooks in front of them on the table and
interrupt the presentation with questions and own discussion.

– Person P04 enters the room again, walks towards ’Desktop-Computer 2’,
sits down and starts working. P04 chooses either way of walking through the
room and thus interrupts the presentation for a short amount of time.

– The presenter walks to a nearby placed camera, grabs it, walks back to being
in front of the screen and meeting table and introduces the camera before
placing it on top of the table for everyone to examine and holding it. The
presentation continues.

– The presenter sits down, back onto his or her previous seat. The meeting
continues.

– Person P04 starts to play a loud, interrupting sound, initiated from his or
her current location in front of ’Desktop-Computer 2’. P04 suddenly stands
up, apologizes to the meeting group and rushes to turn the loudspeakers off.
P04 then rapidly leaves the room. The meeting continues.

– A cellphone, previously placed inside a cupboard, suddenly starts to ring.
Person P04 enters the room, interrupts the meeting by asking if anybody has
seen his or her cellphone and follows the ringing sound towards the cupboard.
He or she grabs the cellphone, shows it to the meeting participants, turns it
off and leaves the room with it. The meeting continues.

– The printer starts to output papers. Person P04 enters the room again, walks
to the printer and while shaking and pretending to repair it, P04 complains
loudly about a pretended malfunction. P04 grabs papers and leaves the room.
The meeting continues.

– All meeting participants, except P02 wearing the sensor, stand up, shake
hands and leave the room.

2.3 Annotated Focus Targets

Considering abovely scripted events, a minimum focus target space can be set
up with the following:

– Persons P00, P01, P02, P03 and P04 (as available and participating)
– Entrance to the room
– Meeting Table (further, each individual’s notebook on top of the table)
– Projection Screen (for during the presentation)
– Camera (that is being introduced during the presenter’s talk)
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Fig. 2. Camera 1’s view of a recorded meeting scene during a short presentation, given
by person P00. Person P02, sitting opposite to the presenter, is wearing the magnetic
motion sensor to capture her true head orientation, depicted by the red (x), green
(y) and blue (z) coordinate axes. All axis aligned bounding boxes of focus targets we
annotated, visible from this view, are highlighted in white.

Fig. 3. Left: Overview of annotated focus targets throughout the meeting room. Right:
Observed trajectories of all meeting participants. Rather than only gathering meetings
with fixed seating positions, participants were advised to walk throughout the entire
room, to distract the visual focus of the remaining meeting members.

– Loudspeakers (interrupting the meeting by outputting a disruptive sound)
– Cupboard enclosing the later-on interrupting cellphone
– Printer

For completing the list of potential targets, such as surrounding tables, chairs,
working places or cupboards, the room’s interieur was completely modeled in 3D:
The position and bounding box of each object was measured and head bounding
boxes of all meeting participants were annotated for every camera view and
every frame recorded. The head bounding boxes were used to triangulate 3D
positions of the corresponding heads’ centroids in room coordinates and provide
basis for future estimation of head orientation for all participants. In addition,
the magnetic motion sensor provided groundtruth information about the head
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orientation for person P02 with approx. 30Hz. Person P02 was always made
sure to be one of the unaware meeting participants. All in all, a total of 36
targets were made available for the annotation process, classifying each meeting
participant’s visual focus. As can be seen in Fig. 3, air conditioning, all chairs
and sofas, desktop PCs and cupboards were included as potential targets, too.
Even a small robot head we used for different experiments was considered as
a potential target due to its position near the meeting table. Fig. 4 depicts a
distribution of all annotated objects and persons for how often they were focused
throughout the entire dataset by either meeting participant and thus provides a
complete overview of all included focus targets. An example of a meeting, with
some of the targets being highlighted, can be seen in Fig. 2.

3 Estimating Visual Focus of Attention

3.1 Target Modeling

Due to targets moving, we decided to describe each object and person by its axis
aligned bounding box in 3D space (see Fig. 2). In order for targets to be able
to be focused, their box must overlap or intersect with the respective person’s
viewing frustum. This viewing cone was defined to open up 60◦ horizontally
and 50◦ vertically. A potential target Fi thus lies within the viewing frustum, if
its axis aligned bounding box contained at least one point Pi = (x, y, z) on its
shell within that cone. For gaining that representational point Pi, we computed
the nearest point (by its euclidean distance) on the box, relative to the head
orientation vector. Pi either resembles a true intersection or a point on the box’
edges. Pi is verified to reside within the viewing cone - targets outside the viewing
frustum are ignored, their likelihood to be focused was set to 0.

3.2 Baseline: Choosing the Nearest Target

A comparative baseline is established by classifying for target Fi, who seems to
be nearest to the observed head orientation. Hence, we distinguished targets by
their euclidean distance, computed with their respective representative points
Pi and the head pose vector.

3.3 An Adaptive Focus Model

We adopted the described visual focus model presented in [15], which summarizes
a linear correlation between the corresponding gaze angle αG towards the target
and the observable head turning angle αH when focusing on it:

αH = kα · αG (1)

We analyzed this relation for dynamic and moving persons and objects by
computing αH based on the annotations we made upon our dataset and all
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Fig. 4. Distribution of visually focused targets. Each column depicts the focus distri-
bution for the person sitting at the respective position (P00, P01, P02, P03, P04). Each
row describes one single focus target.

targets representational points Pi described in 3.2. A measured mapping coeffi-
cient kα could thus be obtained with

kα =
αH

αG
(2)

As depicted in Fig. 6 and intuitively assumed, kα’s value does not stay fixed
throughout the observations, but rather changes, depending on the dynamics
in the observed scene. Its variance can be described as rather high, changing
from positive to negative values, adapting to focus changes that happen over
time. The presented camera view in Fig. 6 shows the recorded scene during
the highlighted time range in kα’s plot. Its values were computed for person
P02 (left person in the images), who is positioned at the table’s southern edge,
wearing the magnetic motion sensor on her head and being one of the unaware
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meeting participants. The scene shows all participants meeting at the table,
greeting each other. P02’s focus changes from Person P03 (standing to the right
at the table’s western edge, with an approximate horizontal gaze angle of +60◦)
to person P00 (standing right in front of her to the north, at approximately
−10◦ horizontally). While looking at P03, head orientation was measured to
intersect with the target, hence the mapping factor of 1.0. During focus change
to P00, head pose slowly adapted to the observable gaze change, but stopped
at approximately +3◦: the mapping coefficient kα changed to a value of − 3
to shift the head vector onto the target’s real position at −10◦. Fig. 5 shows an
exemplary depiction of this process: Depicted are three targets to focus on. In
the top row of the image, focus changes quickly between targets 2 and 3. Due to
the rapid interaction, head orientation slows down right between the two persons
and eye gaze is used to overcome the difference to focus on the particular target.
A fixed mapping coefficient would map target 2’s position towards target 3 and
target 3’s position even further away. If only this kind of interaction is given, a
static model interprets the shifted position of target 2 successively and classifies
correctly for person 2, even though its position seems rather shifted. The bottom
row shows a successive focus change between targets 1 and 2. Here, using the
same fixed mapping coefficient would map target 2’s position towards target 3
again (but not as far as in the top row) and target 1’s position towards target
2. A static model trained with these head observations, would assume target 2’s
gaze angle to lie nearer in front than the static model trained with observations
from the top image. Further, the fixed mapping coefficient clearly shows, that
head orientation, when focusing on target 1, is clearly mapping into the wrong
direction. It needs to adapt to a lower value. The example shows, how the region
of interaction and interest influences the necessary transformation value and
should be due to adapt.

To better model the dynamics in mapping, we defined a discrete set of possible
coefficients (kα, kβ) for mapping horizontal and vertical head orientation αh and
βH , and reweighed them by means of the most likely focus target Fi’s a-posteriori
probability, given the corresponding mapping:

π(kα,kβ),t = γ · π(kα,kβ),t−1 + (1 − γ) · arg max
Fi

p(Fi|Φkα,kβ
) (3)

The mapping coefficient pair (kα, kβ) with highest weight is chosen for map-
ping head pose and finally classifying for the target, that shows maximum a-
posteriori probability.

Since most coefficients might intersect with a target, hence return a high
likelihood for the given transformation, each target includes an a-priori factor
for stating the probability of actually focusing it or changing focus towards it.

In general, the a-posteriori likelihood is defined by

p(Fi|Φkα,kβ
) =

p(Φkα,kβ
|Fi) · P (Fi)

p(Φkα,kβ
)

(4)
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Fig. 5. Top row: Focus changes back and forth between target 2 and target 3 (high-
lighted red): when focusing target 2 (middle image), a fixed mapping coefficient
0 < kα < 1 maps head orientation (solid arrow) onto target 3 (dashed arrow). The
gaze angle to target 3’s is put even further away than its real position (right image).
Bottom row: successively happening focus change between target 1 and target 2: while
in the top row, when focusing target 2, head pose tends to cluster towards target 3,
here, its corresponding head orientation can be observed between target 1 and 2. Fur-
thermore, target 1’s mapped gaze position is shifted towards the second target, instead
of backwards to its real origin.

with Φkα,kβ
= (αH

kα
, βH

kβ
) being the adapted head orientation with the horizontal

rotation αH , transformed with the mapping factor kα and βH being the vertical
head rotation transformed with kβ .

The a-posteriori probability of a target Fi is composed of different factors that
describe possible models of the scene’s context. By now, we simply include the
likelihood of looking at this target in the last n frames and secondly a change of
pose to the target in the current frame T :

P (Fi) =
1
n

T−1∑
t=T−n

(pt(Fi|(Φt))) · ϕ(
∂(� (Φ, Fi)))

∂t
) (5)

The angular difference � (Φ, Fi) describes the distance between the real head
orientation and target Fi’s representational point Pi. If the head is rotated to-
wards a target Fi, the angular difference decreases, hence its derivation ∂( � (Φ,Fi))

∂t
over time shows peaks of negative values and implies a more likely focus change
towards that particular target.

3.4 Experimental Evaluation

We reduced the target space to meeting participants, meeting table and pro-
jection screen only. This included 88% of all focused objects as annotated in
Table 4 and reduces complexity both for these first evaluations and annotations,
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Fig. 6. Respective plot of person P02’s mapping coefficient kα and the corresponding
scene in the meeting to the highlighted time window in the plot: Person P02 is standing
to the left in the images. Her mapping coefficient k to project the horizontal head
orientation to its respective gaze-angle does not stay fixed over time (as visible in
the plot). Values of 1 depict, that head orientation points directly to the target and
intersected its axis aligned bounding box. The strong variance in the highlighted time
window depicts a focus change to person P00 standing in front of her and shows that
head orientation not always points behind gaze angles, but depending on the direction
focus changes are happening from, might also point ahead of the targets’ true positions.
Thus, k needs be adapt to a much lower value to map head pose to a lower gaze angle.

Table 1. Recognition rates on the described dataset for person P02. Four different
approaches are compared (three direct mappings with a fixed mapping coefficient kα

respectively and our adaptive approach with a variable kα). The constant mapping
factor kα = 0.72 was computed as being the mean mapping coefficient when mapping
the observed head orientation to the annotated targets. Head orientation was measured
with a magnetic motion sensor.

Mapping Meeting 1 Meeting 2 Meeting 3 Meeting 4 Mean

Direct Mapping (kα = 1) 54% 49% 57% 51% 53.5%

Direct Mapping (kα = 0.5) 53% 49% 43% 55% 49.5%

Direct Mapping (kα = 0.72) 53% 52% 48% 51% 50%

Adaptive Mapping (γ = 0.95) 58% 59% 55% 61% 59%

which are still happening and take a lot of time to define all object and person
positions. At the current time writing this paper, all of the videos are annotated
for all persons’ corresponding visual focus, but only four videos provide the po-
sitions and bounding boxes of above mentioned targets. Due to missing upper
body annotations for all remaining participants, our evaluations only included
estimating focus for person P02, wearing the magnetic motion sensor, whose
body orientation was always made sure to show towards the projection screen.
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Fig. 7. Left image: Recognition Rate (upper green plot) and mean difference of esti-
mated kα to groundtruth kα (lower red plot), with respect to increasing adaption factor
γ. A value of γ = 1.0 describes that the scores πkα are not adapted at all. In this case,
the constant mapping coefficient kα = 0.72 was used, which showed to be the measured
mean mapping factor over all videos for person P02. Right image: Groundtruth (red
plot) versus estimated (green plot) mapping values kα in a 30sec. long scene.

The low numbers clearly show the difficulty of the task, especially of this par-
ticular setting we chose for meetings: Person P00’s seat is right in front of the pro-
jection screen. Reliantly distinguishing between the two targets is only possible,
if either of them is ignored for any reason (possibly due to person P00 sitting a lot
nearer and thus overlapping too much of the viewing frustum towards the screen)
or context is further taken into account for understanding whether the interest
relies on a person sitting in front of the screen or the screen directly behind.

Clearly visible from the results however is, that an adaptive mapping of head
pose to the respective focus target increases the recognition rate in almost ev-
ery case. The only exception shows to be video 3, where a direct interpretation
of head pose seems to perform slightly better than a variable (or even fixed
with different values) mapping. This might be due to the fact, that this per-
son mostly used its eye gaze to focus on targets - head orientation stayed fixed
for most of the time. During the video, our system kept the mapping coeffi-
cient relatively constant due to the missing head movements. Especially, rapid
focus changes between two targets were more or less completely ignored by our
system: Where in the remaining videos slightly head rotations towards the re-
spective targets were observable, here, only gaze was used to switch back and
forth - hence, our approach only recognized one target focused during this time;
due to the mapped head orientation often the wrong one during these interac-
tions. Further, especially moving targets, for example person P04 passing by in
between the meeting table and the projection screen as depicted in Fig. 1, only
distracted person P02’s visual focus by quick eye movements, instead of letting
head orientation follow that respective trajectory. The focus did not change for
more than fractions of frames, it was kept on the previous target all the time.
However, the a-priori likelihood described in equation 5 includes the derivation
of the difference between head pose and a target’s gaze angle. This derivation
even shows peaks, if head orientation stays fixed and the target passes by, since
then, the angular distance decreases down to the point where head pose and the
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trajectory intersect. This factor seems to provide a possible basis for recognizing
focus changes, but does not allow to distinguish between real focus changes and
moving objects or persons only. In the example of person P02 during meeting
video 3, the interrupting person shows high likelihoods for being focused at when
walking only through the room, even though head pose stayed fixed. The focus
change here, is enforced to be recognized, even though in this case it does not
happen at all.

Hence, general questions that are to be answered in future work (especially
as soon as the complete dataset annotation process is finished) are, how head
orientation correlates to moving targets and if a fitting user model for this per-
ception can be found during meetings (do people tend to follow behind the
target’s trajectory or do they rather estimate the trajectory in advance and
adapt to movement changes?) as well as how several focus targets merge into
one single group of interest for particular meeting members or objects instead
of distinguishing between every single item. Future work also includes the fast
estimation of upper body orientation to easily recognize every meeting mem-
ber’s resting position and initial head orientation when looking straight forward.
This cue, also should show strong correlation to group behavior and allow focus
target abstractions by separating persons into groups, analyzing group roles and
including multi-person focus of attention and region of interests with respect to
individual groups and their interactions.

4 Conclusion

In this paper we presented our work on enhancing the estimation of visual fo-
cus of attention in group meetings: We collected a new dataset to include dy-
namic scenes and moving persons and objects. The dataset contains recordings
of meetings from the beginning where all participants enter the room and follows
a predefined script of events that three acting meeting members in the record-
ings were to follow and suprise further attending and unaware participants with.
The sensor setup both contains visual recordings from wideangle cameras in the
room’s upper corners and a panoramic camera on the ceiling as well as audio
recordings from T-shaped microphone arrays and one table-top microphone on
top of the meeting table. All recordings were annotated for the participants’ head
bounding boxes, everybodies’ visual focus of attention and the complete room’s
interieur in 3D by means of bounding boxes of each object and allowed target
that was annotated. Secondly, we described and evaluated our first system to es-
timate visual focus of attention for one person on moving targets and achieved an
overall mean recognition rate of 59%. We compared our approach to interpreting
head orientation as the actual gaze direction and mapping its vector onto the
first-best matching, nearest corresponding focus target and our enhancements
showed an overall increase in recognition rate by almost 9%. Current and ongo-
ing work and research include the analysis of the targets’ movements, adding a
correlation model to moving focus targets and extending the target space to all
annotated objects in the room. Further, in order to adopt our approach on every



Visual Focus of Attention in Dynamic Meeting Scenarios 13

meeting participant, independent of his or her movement, research on estimating
upper body orientation is due to be done and combined with estimating head
orientation and a fully automate multi-person tracking and identification.
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Abstract. This paper presents a novel face tracker and verifies its ef-
fectiveness for analyzing group meetings. In meeting scene analysis, face
direction is an important clue for assessing the visual attention of meet-
ing participants. The face tracker, called STCTracker (Sparse Template
Condensation Tracker), estimates face position and pose by matching
face templates in the framework of a particle filter. STCTracker is ro-
bust against large head rotation, up to ±60 degrees in the horizontal
direction, with relatively small mean deviation error. Also, it can track
multiple faces simultaneously in real-time by utilizing a modern GPU
(Graphics Processing Unit), e.g. 6 faces at about 28 frames/second on
a single PC. Also, it can automatically build 3-D face templates upon
initialization of the tracker. This paper evaluates the tracking errors and
verifies the effectiveness of STCTracker for meeting scene analysis, in
terms of conversation structures, gaze directions, and the structure of
cross-modal interactions involving head gestures and utterances. Exper-
iments confirm that STCTracker can basically match the performance of
from the user-unfriendly magnetic-sensor-based motion capture system.

Keywords: Meeting analysis, face tracking, multiparty conversation,
dynamic Bayesian network, multimodal interaction, GPGPU, CUDA.

1 Introduction

Face-to-face conversation is the most basic forms of communication in our life
and is used for conveying/sharing information, understanding others’ inten-
tion/emotion, and making decisions. To enhance our communication capability,
the automatic analysis of conversation scenes is a basic technical requisite for ef-
fective teleconferencing, meeting archival/summarization, and to realize commu-
nication via social agents/robots. In the face-to-face setting, people exchange not
only verbal messages but also nonverbal messages. The nonverbal messages are
expressed by nonverbal behaviors in multimodal channels such as eye gaze, facial
expressions, head motion, hand gesture, body posture and prosody [1]. Among
the nonverbal messages/behaviors, eye gaze is especially important because it
has various roles such as monitoring others, expressing one’s attitude/interest,
and regulating conversation flow [2]. However, gaze direction during natural
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conversation is difficult to measure directly. Face direction is often used as an
alternative to gaze, because it is relatively easy to measure. Also face direction
is not just an alternative; by itself it is a useful indicator of people’s attention
to others during meetings. In addition, the temporal changes in face direction
indicate head gestures such as nodding. Therefore, face direction is an important
cue for analyzing meetings.

For measuring face direction, visual face/head tracking has been the gold
standard because it is not intrusive, unlike contact-type motion sensors. So far,
several research groups have been trying to develop face tracking systems to
capture human communicative behaviors. As a pioneering work, Stiefelhagen et
al. developed a head pose detector based on a neural network [3]. Its advantage
is that it can work with small faces captured by omni-directional cameras. Re-
cently, his group extended the scope of their neural-network-based head pose
detector to cover multi-view images captured by multiple cameras in their smart
room, to widen the range of human positions detectable, and head pose in the
room [4]. Unfortunately, due to its use of a neural network, its performance heav-
ily relies on the training process, which requires large training images of various
head poses of different people. Luis et al. proposed a stereo-based face track-
ing system for human-robot interaction [5]. Their tracker employed the gradient
search strategy based on both image intensity and depth from stereo cameras.
Moreover, the Bayesian filter framework has been exploited to track head lo-
cation and pose in images from a single camera [6] and from multiple cameras
[7]. The advantage of their trackers [6][7] is that it can cover a wide range in
head pose. However, it can not provide precise head pose angles, because they
quantize head pose into a few discrete states.

Although many face/head trackers have been developed so far, no really prac-
tical and comprehensive system suitable for automatic meeting analysis has been
realized. This is because meeting scene analysis entails many difficulties such
as large head rotation, occlusions, drastic changes in facial expressions, open-
ing/closing mouth, and person independency problem. For example, meeting
participants often turn their head to look at person sitting on their right/left dur-
ing a meeting. This kind of head rotation is often large enough that many existing
trackers are unable to follow it. Moreover, the tracker must be precise/accurate
enough to differentiate which of several people sitting close together is the in-
tended gaze target. Furthermore, the tracker needs to handle multiple faces
simultaneously, unlike personal man-machine interfaces; the demands placed on
computational resources also hamper realtime meeting analysis.

To tackle these problems, the authors have been developing a new face tracker
called STCTracker (Sparse Template Condensation Tracker) [8][9]. The purpose
of this paper is to verify its effectiveness for meeting analysis, a target set by the
authors for estimating conversation structures (“who is talking to whom”), gaze
pattern (“who is looking at whom”), and interaction structures (“who responds to
whom”); a large part of the analysis has been based on head pose measurements
from magnetic sensors[10][11]. This paper targets situations in which each meeting
participant is captured by a separate monocular camera. STCTracker is robust
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against large head rotation and can track multiple faces simultaneously in real-
time. The key to its robustness is its combination of robust template matching and
multiple hypothesis generation/testing in the particle filter framework. Its speed is
achieved by utilizing the power of modern GPUs (Graphics Processing Units); the
parallel architecture of recent GPUs perfectly matches the parallelism available in
particle filtering. In addition, it can automatically build 3-D face templates when
tracking starts. Experiments confirm that STCTracker can basically match the
face direction measurement performance of magnetic-based sensors.

This paper is organized as follows. Section 2 presents our face tracker and eval-
uates its performance. Section 3 verifies the effectiveness of the tracker in terms
of conversation scene analysis. Section 4 presents our conclusion and discussions.

2 Fast and Robust Face Tracker: STCTracker

For measuring face directions, we introduce the Sparse-Template Condensation
tracker,we named it STCTracker.This trackerwas originally proposedby Matsub-
ara and Shakunaga [12] and we first applied it to conversation scene analysis [13].
Recently, the authors enhanced it into a more robust, accurate, and faster tracker
for followingmultiple faces [8][9].This sectionfirst overviewsSTCTracker, and then
describes two key improvements: the face model and accelerated tracking. Finally,
a performance evaluation is presented.

2.1 Overview of STCTracker

The basic idea of STCTracker is combining template matching with particle fil-
tering. Figure 1 shows the framework of STCTracker. In contrast to traditional
template matching, which assesses all pixels in a rectangular region, sparse tem-
plate matching focuses on a sparse set of feature points within a template region,
called the sparse template (Fig. 2(b)). The state of a template, which represents
the position and pose of the face, is defined as a 7 dimensional vector consisting
of 2-DOF translation on the image plane, 3-DOF rotation, scale (we assume
weak-perspective projection), and an illumination coefficient. The particle filter,
also known as the Condensation algorithm, is used to sequentially estimate the
posterior density of the template state, which is represented as a particle set.

As illustrated in Figure 1, the STCTracker consists of initialization, update,
diffusion, and display. First, the initialization stage detects faces in images, gener-
ates templates, and initializes the particles. The update stage calculates particle
weight based on the likelihood of observation, which is defined using matching
error between input images and the template whose state is assigned by each
particle; higher weight is given to particles with smaller matching error. More
specifically, the likelihood value is defined as the inverse of the matching error.
The matching error is a function of the summation of difference in image inten-
sity values between each feature point in the face template and the corresponding
pixel of the input image. Here, a robust function is used in the calculation of
matching error to alleviate adverse effect from outlier points caused by occlu-
sions. The resulting particle distribution represents the posterior distribution of
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Display estimates

Fig. 1. Framework of STCTracker

template states. The diffusion stage resamples particles and predicts the parti-
cle distribution at the next time step. The update stage and diffusion stage are
alternately repeated for each image frame. The display stage calculates point
statistics from the posterior particle distribution output by the update stage.

STCTracker has the advantages of speed owing to the sparseness of the
feature points and robustness owing to robust template matching combined
with multiple-hypothesis generation/testing by the particle filter framework. Al-
though the face model (template) is rigid, it can accept a certain amount of
facial deformation caused events such by utterances and expression changes.

2.2 3-D Face Template and Automatic Initialization

The original STCTracker employed a flat plane as the shape model, as a rough
approximation of the human face surface [12,13]. Due to the shape differences
between the flat plane and the human face, tracking was essentially unstable and
inaccurate estimates were output. In addition, the original STCTracker needed
manual initialization, i.e. detection of target face and manual setting of the initial
position and pose of the target before tracking.

Authors’ new STCTracker solves these two problems simultaneous by intro-
ducing the 3D face model and automatic initialization stage, as illustrated in
Figure 2. First, a new face is detected by using a face detector (Step 1); we em-
ploy the Viola & Jones boosting algorithm [14]. Step 1 is repeated until frontal
face(s) are found. The minimum face size applicable for tracking is about 50×50
pixels. There is no limit on maximum face size. Note that face size does not
affect the speed of tracking due to the sparseness of the face template. Next,
the Active Appearance Model (AAM) [15] is used to locate facial parts and con-
tours from the facial subimages detected in step 1 (Step 2). AAM represents
the combination of eigen face textures and eigen face shapes, both of which
were built from a set of training samples with hand-marked facial landmarks
(Fig. 2(a)). Next, in step 3, a set of feature points (Fig. 2(b)) is extracted from
each facial region surrounded by a facial contour determined by AAM fitting.
The feature points are located at the local minimum/maximum of image inten-
sities and straddle the zero-cross boundaries of images. Usually, the number of
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Fig. 2. 3-D face model and automatic initialization process

feature points is 100 ∼ 200. Finally, the depth value of each feature point is re-
trieved from a personalized depth map (Fig. 2(d)), which is created by morphing
an average shape model (Fig. 2(c)) so that the facial landmark points and those
of the AAM fitted model coincide. Note because AAM fitting is 2 dimensional
and does not include any depth information, we assume that the morphed aver-
age 3-D face shape provides a good approximation of the actual face shape. The
facial template consists of a set of feature points whose attributes include 3-D
position (2-D location on facial sub-image and depth value) and corresponding
image intensity.

After the initialization process, steps 1 to 4 in Fig. 2, M particles of each
face to be tracked are randomly selected and their state-space values filled with
random values uniformly distributed around the initial position. Note, AAM
fitting is used only for initialization, not for tracking itself. Tracking is based on
the fixed face model (facial template) for each person.

2.3 Speed Boost by GPU

The particle filter algorithm itself is computationally expensive, but the weight
computation (updating stage in Fig. 1) is the main bottleneck, and so we execute
it on a GPU, Graphics Processing Unit. Especially, we use NVIDIA’s CUDA
(Compute Unified Device Architecture [16]) environment which allows the GPU
to be viewed as a data-parallel computing device that operates as a coprocessor
to the main CPU. Weight calculation of each particle is an independent process,
as is the matching error calculation for each feature point. Our method exploits
these independencies to utilize the parallel processing offered by the GPU. The
atomic computation (called a kernel in GPU computing) performs the following
operations. First, the 3D transformation of each feature point as estimated by
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Fig. 4. Overview of scene. (a)plan view of participants’ location, (b)whole view of
participants.

each of the particles, and then the feature point gray level is compared against
the resulting point in the full image. The sum of all those comparisons for each
feature point results in the weight of each one of the particles. This is our output
stream: the collection of weight values of all particles. For more detail see [9].

2.4 Performance Evaluation of Face Tracking

Speed. Fig. 3 shows a comparison of the speeds achieved by the CPU-only
version and the GPU version of the same STCTracker. The developed software
(a mixture of C++ and CUDA) was tested on an Intel Core 2 Duo 2.66GHz
host system with 2GB RAM, with a NVIDIA GeForce 8800GTX GPU. The
results indicate an important speed boost compared to the CPU-only version of
the algorithm, especially when using a large number of particles and/or tracking
multiple faces simultaneously. The boost makes the tracker eminently suitable for
real-time processing in a standard PC platform, e.g. analysis of group meetings.

Accuracy. We targeted meeting scenes as shown in Fig. 4; bust-shot images
of each person were captured by separate cameras, indicated by C1 ∼ C4 in
Fig. 4(a). Image size was 640×480 pixels and face size was about 170×170 pixels.
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Fig. 5. Time sequence of horizontal angle of head rotation [deg]. Thin solid (read)
lines: tracker result, Thick pale (blue) lines : sensor output. 1[frame]=1/30[sec]

We applied STCTracker to each person’s video offline separately. The tracking
speed was about 28[frame/sec] for each person with 10000 particles1. Also, as
post-processing, a wavelet denoising technique [17] was applied to each compo-
nent of face position and pose, in order to reduce jitter. Fig. 5 shows the time
series data of horizontal head azimuth angle (horizontal rotation) obtained with
our face tracker; the azimuth angle is defined as the angle between world coordi-
nate X and the frontal direction of face, as shown in Fig. 4(a). Fig. 5 also shows
the corresponding sensor output from magnetic-based 6-DOF sensors (POLHE-
MUS FastrakTM), which were attached to the subjects’ heads with hair bands.
For a more acccurate comparison, a bias was added to each STCTracker output
so that it had the same average as the sensor output. 2 Fig. 5 confirms that
tracking data well replicated the sensor output.

Table 1 shows tracking error in the metric of mean deviation, the average
value of absolute difference between tracking-based and sensor-based sequences.
1 We decided to use 10000 particles for more accurate tracking than 1000 particles, as-

suming offline processing of prerecorded video. In contrast, Fig. 3 uses 1000 particles,
because this yields faster tracking for realtime applications while still maintaining
reasonable accuracy.

2 Originally, the face direction measurement obtained by STCTracker is relative to
the camera coordinate system; the rotation angle is 0.0 when the face points directly
at the camera (= frontal face = face pose at initialization). However, the target
video was captured using uncalibrated cameras, and no information is available to
link the measured values to global coordinates. Therefore, we decided to add a
uniform bias to the horizontal rotational component for comparison purposes. Note
that measurements relative to unknown camera coordinates are still useful for the
meeting analysis proposed by the authors in [10][11]. It can infer “who is looking
at whom” in a self-organizing manner given prior knowledge on the seating order of
participants; absolute face directions in global coordinates are not necessary.
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Table 1. Accuracy of facial direction estimates in mean deviation [deg]. Azimuth =
horizontal rotation = head shaking direction, Elevation = vertical rotation = head
nodding, Roll = in-plane rotation = head tilting.

Azimuth [deg] Elevation [deg] Roll [deg]

With denoising 3.59 3.21 1.29
Without denoising 3.68 3.30 1.32

8000 9000 10000 11 000 12000

-60
-40
-20

0

frame

[deg]
P2's horizontal head angle (0[deg] = frontal direction)

A

B

Fig. 6. A part of person 2’s sequence in Fig. 5. 0[deg] corresponds to frontal face direc-
tion. Thin solid (read) lines : tracker result, Thick pale (blue) lines : sensor output.

(a) (b) (c)

Fig. 7. Snapshot of tracking results. (a)profile view = turning sideway (corresponds to
part A in Fig. 6), (b)partial occlusion (corresponds to part B in Fig. 6), (c)laughing.

The length of data was about 5 minutes. These tracking errors are fairly small
compared to the dynamic range of head rotation, especially horizontal head
rotation. These results also confirmed that the denoising applied decreases the
error.

Robustness. To show the robustness of STCTracker against large head turn,
Fig. 6 shows a part of person 2’s horizontal head angles over time. Fig. 7(a)
shows snapshots of the templates during tracking at the time indicated by part
A in Fig. 6. From Fig. 6 and Fig. 7(a), it is confirmed that STCTracker is robust
against significant head rotation (about 60[deg]), when the target keeps looking
at another sitting on his right or left. In the meeting situation, partial occlusions
can occur when a person covers his/her face with their hand(s), as shown in Fig.
7(b), which corresponds to part B in Fig. 6; the tracking results are significantly
degraded due to the occlusion. But, tracking itself continues and the correct
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track is recovered when the occlusion passes. STCTracker is also robust against
changes in facial expression from the one in the registered template, as shown
in Fig. 7(c).

3 Meeting Analysis Based on Face Tracking

This section applies STCTracker to a method of meeting analysis, which the
authors proposed in [11]. A comparison against sensor-based analysis confirms
the effectiveness of the proposed face tracker.

3.1 Overview: Automatic Inference of Nonverbal Cross-Modal
Interactions in Meeting

This framework was proposed for analyzing cross-modal nonverbal interactions
in multimodal face-to-face conversation; its goal is to determine “who responds
to whom, when, and how”, from multimodal cues including gaze, head gestures,
and utterances. We formulated this problem as the probabilistic inference of the
causal relationship among participants’ behaviors involving head gestures and
utterances. Fig. 8 shows the flow of the analysis. First, from the images obtained
with cameras, face tracking is done to yield the temporal sequence of face direc-
tions. From the sequence, head gestures such as nodding, shaking, and tilting are
detected. The voice activity of each participant is detected from audio signals
captured by lapel microphones. From the observed nonverbal behaviors, face di-
rections, head gestures, and utterances, conversation scene analysis is conducted
based a conversation model to estimate conversation regimes, gaze directions,
and interaction structures. The conversation regimes represent the global status
of conversations, and indicate “who is talking to whom”. Here, for 4 person con-
versation, the conversation regime has 11 discrete states: 4 convergence regimes
(monologue), 6 dyad-link regimes (dialogue between each pair), and 1 diver-
gence regime (no organized conversation). The gaze directions indicate “who is
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Table 2. Accuracy of head gesture detection [%]

Data 1 Data 2
Precision Recall Hit Precision Recall Hit

Tracking-based 57.2 81.1 76.8 69.7 62.0 81.0
Sensor-based 60.0 86.6 73.3 75.1 60.3 77.2

Table 3. Quantitative evaluation of meeting analysis. frame-based hit ratio [%]. (a)Gaze
directions, (b)Conversation regimes, (c)Reaction targets.

Data 1 Data 2
(a)Gaze (b)Regime (c)Reaction (a)Gaze (b)Regime (c)Reaction

Tracking-based 75.0 84.2 95.0 67.1 52.8 91.0
Sensor-based 69.4 72.5 95.9 69.0 55.1 91.4

looking at whom”; there are 4 discrete states for each person (looking at one
among others, or avert gaze from everyone). The interaction structures indicate
“who responds to whom”; the state of interaction structure is defined for each
utterance and gesture intervals; spontaneous or reaction toward another. Our
conversation model is a hierarchical probabilistic model; the structures of in-
teractions are probabilistically determined from high-level conversation regimes
and gaze directions. The estimation is done using the Markov chain Monte Carlo
method. See the details in [11].

3.2 Experiments

This paper targets the same data set as used in [11]; group discussions by 4 women,
2 sessions, about 5 minutes each. Model parameters were the same as used in [11].

Head Gesture Detection. Head gesture intervals are detected by the wavelet-
based gesture detector proposed in [11]. We targeted nodding, shaking, and tilt-
ing. The detection was based on the denoised sequences of head pose output by
STCTracker. We employ head pose components consisting of azimuth (horizon-
tal rotation), roll (in-plane rotation), and y coordinate (vertical axis on image
plane). The reason why we use the y coordinate instead of elevation (verti-
cal rotation) as used in [11] is that the elevation sequences include significant
amounts of noise which hamper accurate gesture detection; the y coordinate is
more stable and well reflects vertical head rotation like nodding. Table 2 shows
the accuracy of gesture detection using the measures of frame-based precision,
recall, and hit ratio. Table 2 suggests that tracking-based gesture detection is
moderately successful at this stage of development and that it is useful for meet-
ing analysis. Also, it confirms that tracking-based detection generally has lower
performance than sensor-based detection. One possible reason is that small nods
(almost invisible) were eliminated by the denoising post process.

Evaluations of Meeting Analysis. Table 3 shows the results of a quantita-
tive evaluation of gaze direction and conversation regimes as determined from
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Fig. 9. Temporal visualization. (a)Tracking result (indicated with mesh), (b)Interaction
network (rectangles : utterance intervals, line segments: gesture intervals, arrows: reac-
tion target).

tracking-based and sensor-based analysis. Table 3(a) lists how often the esti-
mated and manually annotated gaze directions coincided. Table 3(b) lists how
often the conversation regimes were correctly estimated (ground truth provided
by manual annotation). Table 3(c) shows how often the reaction targets (“who
responds to whom”) were correctly estimated (ground of manual annotation).
Table 3 confirms that tracking-based analysis is comparable to sensor-based
analysis, and can sometimes even outperform the sensor-based technique.

Fig. 9 shows the temporal structure of interactions; how the meeting evolved
over time3. It includes face images with tracking results, detected utterance inter-
vals (rectangles), detected gesture intervals (line segments below utterances), and
interaction structure (thin arrows 4). Fig. 9 confirms that head gesture intervals
are reasonably well detected by using tracking-based face direction sequences,
and that the resulting interaction structures were inferred successfully.

4 Conclusion and Discussion

This paper introduced a novel face tracker called STCTracker and verified its
effectiveness in meeting scene analysis. The speed and robustness of STCTracker
will contribute to opening up new fields in realtime multimodal meeting analysis.
Future works include the following. In this paper, the image of each meeting
participant is captured by a separate camera. To avoid this restrictive setting,
3 Movies are available from http://www.brl.ntt.co.jp/people/otsuka/MLMI2008.html
4 An arrow runs from person A’s reaction to the person B’s behavior that triggered

A’s reaction.
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we are now working on an omni-directional camera system that can capture
a complete view with just a single image. Other challenging problems include
enhanced robustness against illumination changes and occlusions. In meetings,
people often cover their face by their hands. Furthermore, we are working on
facial expression recognition based on STCTracker [18].
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Abstract. When talking with someone, we convey intention to each other
by verbal and non-verbal behaviors. In consensus building dialogue, the
participants need to understand whether they agree or disagree. They re-
iterate confirmation of partner’s internal state (agreement/disagreement)
and reaction for it. In this study, we considered that the timing of listener’s
reaction for the confirmation by a speaker reflects listener’s internal state,
therefore analyzed the multimodal timing structures between the confir-
mation and the reaction by utterance and body motion. Especially, we fo-
cused on an action that the speaker turns his face toward the listener as the
confirming action and analyzed how it influences the timing structures. As
the results, we confirmed that the timing structures relate to the internal
state and the relations are controlled by face-turning action.

1 Introduction

In recent years, many researchers have developed user support systems based on
the human-machine interaction. We are currently designing an interactive sys-
tem that supports the human-human task-oriented dialogue making a travel plan
or selecting a gift. The system needs to estimate user’s internal state, such as
intention, through his behaviors in order to serve sensible information or recom-
mend desired goods. We human basically interact using speech in the dialogue.
Speech is the revealed information, and it is consciously controlled. Therefore,
speech can express intention falsely. It is hard for us and the system to estimate
real internal state from speech acculately. In this study, we focus on non-verbal
behaviors. Humans cannot control to express their internal state perfectly, and
real internal state shows through non-verbal behaviors unconsciously [1].

Body motion, such as head rotation, facial expression, and gesture, and prosody
of speech are non-verbal behaviors. We focus on a behavior that a speaker turns
his face toward a listener (face-turning action) to confirm listener’s internal state
in the task-oriented dialogue. What does the face-turning imply in the dialogue?
Humans tend to turn their gaze on the dialogists to observe reaction [2,3]. The
listener’s reaction with body motion would reflect the internal state because the
gazing by the speaker captures the listener’s body action. We also consider that
the face-turning often induces the reaction (sometimes requests the reaction). It

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 26–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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would be a powerful signal to elicit the internal state. We focus on a specific inter-
nal state, which is listener’s agreement/disagreement with an intention expressed
by the speaker. The state is the most primordial one built up in the task-oriented
dialogue. The participants of the dialogue need to understand whether they agree
or disagree, and then reach a consensus. They reiterate confirmation of agree-
ment/disagreement and reaction for it, with occasional face-turning.

Temporal feature is also non-verbal media, which is a feature in the orthog-
onal dimension to the non-verbal behaviors. Some researchers have argued that
the internal state is expressed in the timing of speech response more than in
the prosody of speech [4,5]. They, however, analyzed only speech and ignored
influences of body motion which has important function in face-to-face com-
munication, on the timing of response. We analyze the relations between the
internal state and the timing structures based on both utterance and body mo-
tion, i.e. multimodal timing structures. The listener may unconsciously reflect
his internal state to the timing of the reaction by utterance and body motion
for the speaker’s confirmation with the face-turning.

In this paper, we make some hypotheses about how the multimodal timing
structures relate to respondent’s internal state (agreement/disagreement), and
test the hypotheses by analyzing video data and audio signals recorded in some
consensus building dialogues. Especially, we focus on how the face-turning in-
fluences the timing structures, and discuss the meaning of the face-turning to
confirm partner’s intention in the consensus building communication.

2 Relations between the Timing of the Reaction for the
Confirmation and the Respondent’s Internal State

2.1 Dialogue Components of Consensus Building

Consensus building dialogue is a kind of task-oriented dialogue. The dialogue
usually consists of some exchanges. In this study, we address an exchange com-
posed of Confirmation and Reaction by speech and body action, which is a
primordial framework to convey agreement/disagreement. Confirmation is an
action that starts a new exchange, represents intention, and confirms agree-
ment/disagreement of the partner. Reaction is an action that reacts to Confir-
mation. Fig.1 shows an example of the exchange.

Various body motions occur with utterance of Confirmation and Reaction.
These are non-verbal behaviors that emphasize and supplement verbal behaviors.
We focus on some body motions based on head rotation. Face-turning is one of
the typical body motions denoting Confirmation because its actor can observe

Speaker A : I want to go to the Netherlands. How about you?      : Confirmation

Listener B : Nice! I’m interested in Eredivisie.                                : Reaction

Fig. 1. An example of the exchange
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partner’s behaviors reflecting the internal state, and it often induces Reaction.
Nodding, head-inclining, head-shaking, and face-turning are the typical body
motions denoting Reaction. They can express agreement/disagreement.

2.2 Timing Structures between the Confirmation and the Reaction
by Utterance and Body Motion

Given the situation where speaker A confirms agreement/disagreement of lis-
tener B and B reacts to the confirmation, we have four timing structures, IUU,
IMU, IUM, and IMM expressing the interval between utterance U and body
motion M of the two dialogists (see Fig.2). The details on the definition of the
timing structures are described below. T (EX

t ) denotes the time when an event
Et caused by dialogist X occurs. Es and Ee represent the start and end point
of Et, respectively. U(cnf), U(rct), M(cnf), and M(rct) denote utterance of
Confirmation, utterance of Reaction, face-turning of Confirmation, body motion
of Reaction, respectively.

The timing structure IUU, which is the interval between the end time of ut-
terance of Confirmation by speaker A and the start time of utterance of Reaction
by listener B, is described as

IUU = T
(
U (rct)B

s

)
− T

(
U (cnf)A

e

)
. (1)

Intention of speech is often revealed at the end time of its utterance. We consider
T (U(cnf)A

e ) as the base time of IUU.
The timing structure IMU, which is the interval between the start time of

face-turning of Confirmation by speaker A and the start time of utterance of
Reaction by listener B, is described as

IMU = T
(
U (rct)B

s

)
− T

(
M (cnf)As

)
. (2)

Listener B can observe face-turning by speaker A at the start time of it. We con-
sider T (M(cnf)A

s ) as the base time of IMU. Here, face-turning of Confirmation
is defined below. When face-turning, M∗, satisfies all of the following equations:⎧⎪⎨

⎪⎩
T (M∗

s) ≥ T (U(cnf)s) (3a)
T (M∗

s) ≤ T (U(rct)s) (3b)
T (M∗

s) ≤ T (M(rct)s) , (3c)
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the M∗ is regarded as M(cnf). If some face-turnings satisfy these conditional
equations, the latest one is regarded as M(cnf). Note that IMU is always positive
value because of satisfying eq.(3b).

The timing structure IUM, which is the interval between the end time of
utterance of Confirmation by speaker A and the start time of body motion of
Reaction by listener B, is described as

IUM = T
(
M (rct)B

s

)
− T

(
U (cnf)Ae

)
. (4)

The body motion of Reaction is defined below. When face-turning, nodding,
head-inclining, or head-shaking, M∗, satisfies the following conditional equation:

T (U (cnf)s) ≤ T (M∗
s) ≤ T (U (rct)e) , (5)

and also satisfies either one of the following conditional equation:{
T (U (cnf)e) − T (M∗

s) ≤ 500msec (6a)
T (U (rct)s) − T (M∗

s) ≤ 500msec, (6b)

the M∗ is regarded as M(rct). If some body motions satisfy the conditional
equations, the earliest one is regarded as M(rct).

The timing structure IMM, which is the interval between the start time of
face-turning of Confirmation by speaker A and the start time of body motion of
Reaction by listener B, is described as

IMM = T
(
M (rct)B

s

)
− T

(
M (cnf)A

s

)
. (7)

Note that IMM is always positive value because of satisfying eq.(3c).

2.3 Relations between the Timing Structures and the Respondent’s
Internal State

Some researchers have argued that the respondent unconsciously controls the
timing structure IUU as the negative response timing is later than the positive
one in the task-oriented dialogue [4]. The respondent would also control the tim-
ing of utterance, IUU, according to agreement/disagreement with the partner.
We make the first hypothesis as the following:

Hypothesis 1: Relation between IUU and the Internal State
IUU based on Reaction with disagreement is later than agreement.

Although the dialogists basically use speech to convey information to each
other, they emphasize and supplement it by body motion except in some situa-
tions1. The body motion has often unignorable effects on the dialogue. Especially,
face-turning of Confirmation denotes the action to observe some behaviors by
the respondent, and would also suggest the action to induce some reactions re-
flecting his internal state. The respondent may control IUU more explicitly than
Hypothesis1. We make the second hypothesis as the following:
1 Telephone is one of exceptive situations.
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Fig. 3. Dialogue environment Fig. 4. Captured images

Hypothesis 2: Variations of IUU by Face-Turning
Face-turning of Confirmation increases the difference between IUU of agree-
ment and disagreement supporting Hypothesis1.

The timing structures based on the respondent’s body motion, IUM and IMM

would be controlled as well as IUU. We make the third hypothesis below:

Hypothesis 3: Relations between IUM, IMM and the Internal State
IUM and IMM based on Reaction with disagreement are later than agree-
ment. Face-turning of Confirmation increases the differences between IUM,
and IMM of agreement and disagreement.

In order to test these hypotheses, we analyze video data and audio signals
recorded in some consensus building dialogues, and clarify how the respondent
controls IUU, IUM, IMU, and IMM in the following situations:

(s1) agreement-Reaction for Confirmation by only utterance,
(s2) disagreement-Reaction for Confirmation by only utterance,
(s3) agreement-Reaction for Confirmation by utterance and face-turning,
(s4) disagreement-Reaction for Confirmation by utterance and face-turning.

3 Construction of Dialogue Corpus

3.1 Recording the Consensus Building Dialogue

We constructed a dialogue corpus to analyze the four situations described in
section 2.3. The dialogue task was either-or quiz. Fig.3 shows the overview of
dialogue environment. A display which shows the task and two alternatives was
set at the corner of the square desk, and two subjects interacted side by side in
order to make them produce face-turning obviously.

To evenly analyze the four situations, we regulated experimental conditions
by introducing an experimental cooperator to either subject. Just before they
started the dialogue, the experimenter presented the quiz to each subject, and
queried about the answer to only a real subject as preliminary survey. Then,
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the experimenter instructed the cooperator what to do according to the answer,
e.g. Confirmation by only utterance expressing agreement with the answer. The
real subject could not sense the instruction. The experimenter also made the
cooperator say “If I choose among them, I like XXX” in the dialogue, to regulate
speech of Confirmation under constant speech rate and prosody. XXX is either
alternative depending on the answer. In addition, it is important to keep a
regular timing, Icnf (= T (M(cnf)s)−T (U(cnf)e)), between utterance and body
motion of Confirmation. We investigated the distribution of Icnf by preliminary
experiments. Icnf was mostly distributed between −750 and 0msec. We trained
the cooperator to do face-turning according to the timing and also analyzed only
experimental data which satisfy the following conditional equation: −750msec ≤
Icnf ≤ 0msec.

It is not natural to make the cooperator produce the regulated behavior fre-
quently in a dialogue. We made a rule that the experimenter chooses a preceding
speaker of the dialogue and the cooperator produces the behavior once in the
first exchange only when he is chosen. We analyzed only this first exchange.

We had 13 pairs of dialogists of the same sex with friendships2. We conducted
each experiment based on situation (s1) ∼ (s4) twice every pair, i.e. we recorded
104 dialogues3.

3.2 Extraction of Utterance and Body Motion Events

Each subject wore a directional headset microphone. Stereo cameras were set on
the opposite side of each subject as shown in Fig.3. The resolution of the video
data was 1024 × 768pixel and the frame rate was 30fps. The sampling rate of
the audio signals was 44.1kHz.

Extraction of Utterance Events
We detected the start and end of utterances deleting non-verbal sounds, such as
laugh and cough, by using the sound processing tool “Wavesurfer” 4. If there
was the silent interval longer than 400msec, we regarded it as a pause between
utterances. We labeled each utterance Confirmation, Reaction, and Others.

Extraction of Body Motion Events
Face-turning, nodding, head-inclining, and head-shaking were extracted by mea-
suring the amount of head rotation and head translation. We defined the subject
coordinate system whose origin is the centroid of subject’s head positions shown
in Fig.3. Fz-axis of the system is a horizontal line from the origin to the center
of baseline of the stereo camera, Fy-axis is a vertical line for Fz from the origin,
and Fx-axis is an orthogonal line to both Fy-axis and Fz-axis. We measured the
amount on the system. Let α be an angle between the subject’s head rotation
vector around Fy-axis and the vector from the subject to another. We defined the
time when the temporal differentiation of α goes under/over a certain threshold

2 13 pairs are the subset combination of 4 cooperators and 13 real subjects.
3 13 pairs × 4 situations × 2.
4 http://www.speech.kth.se/wavesurfer/
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Fig. 5. Facial feature points ex-
tracted by AAM
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Fig. 6. Extracted interval of face-turning

as the start/end time of face-turning. We also extracted nodding, head-inclining,
and head-shaking based on the amount of head rotation around Fx-, Fz-, and
Fy-axis, respectively. We defined the time when the absolute amount of the
temporal differentiation of head rotation around each axis goes over a certain
threshold as the start/end time of each body motion.

The amount of head rotation and translation were estimated as below. Firstly,
we applied AAM (Active Appearance Model [6]) to captured face images (Fig.4)
in order to obtain 2-D positions of facial feature points as shown in Fig.5. Sec-
ondly, we applied the stereo measurement method [7] to 2-D positions of the
points in order to obtain 3-D positions of them. Thirdly, we obtained the amount
of head rotation and translation by solving the minimization problem,

min
R,T

n∑
i=1

‖ Q′ − (RQ + T) ‖2, (8)
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where n is the number of the facial feature points, Q′ denotes a 3 × 1 vector
which has 3-D position of capturing facial feature point i, Q denotes that of the
face model which was constructed from the first frame of the captured image
sequences, R denotes a 3× 3 rotation matrix, and T denotes a 3× 1 translation
vector. We used the algorithm based on singular value decomposition method
(SVD) to solve eq.(8) [8]. The algorithm applies SVD to QQ′T (= USVT ). The
head rotation, R, was calculated as R = VUT . And then the head translation, T,
was measured by the difference between centroid of the 3-D points of capturing
face and the face model. Fig.6 shows an example of extracted face-turning.

Manual Compensation of Extracted Events
We used the annotation tool “Anvil” [9] and compensated some start/end times
of utterance and body motion.

4 Analysis of Relations between the Timing Structures
and the Internal State and Test of the Hypotheses

4.1 Analysis of the Timing Structures on the Reaction by Utterance

At first, we analyze the timing structures IUU and IMU on utterance of Reaction.
The utterance occurred for each utterance of Confirmation in the whole of the
experiments. The number of samples for situation (s1), (s2), (s3), and (s4) were
24, 24, 22, and 20, respectively.

Distributions of IUU

The distributions of IUU resulted from the dialogue corpus are shown in Fig.7.
We focus on the median and the quartile deviation extracted from the distri-
butions to eliminate outliers from sample statistics. The medians of timings of
agreement- and disagreement-Reaction for Confirmation without face-turning
were 415msec and 765msec, respectively. The quartile deviations of their tim-
ings were 765msec and 1355msec, respectively. Each peak of the distributions
was between 0 and 500msec.

And the medians of timings of agreement- and disagreement-Reaction for
Confirmation with face-turning were 350msec and 820msec, respectively. The
quartile deviations of their timings were 753msec and 670msec, respectively.
The peak timing of the distribution of disagreement-Reaction (500 ∼ 1000msec)
was later than that of agreement-Reaction (0 ∼ 500msec).

Distributions of IMU

The distributions of IMU are shown in Fig.8. IMU has distributions and statistics
similar to IUU because we regulated Icnf within a defined span as described in
section 3.1.

Test of Hypothesis 1
The timing of disagreement-Reaction for Confirmation without face-turning was
later than that of agreement. This result supports Hypothesis 1. However, the
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Fig. 8. Histograms of IMU

Table 1. Occurrence frequency of M(rct)

situation frequency of M(rct) / frequency of U(cnf)

s1 14 / 24 (58.3%)
s2 20 / 24 (83.3%)
s3 18 / 22 (81.8%)
s4 9 / 20 (45.0%)

result of the median test does not show significant difference between medians
of their timings (significant probability p = 0.56).

Test of Hypothesis 2
The timing of disagreement-Reaction for Confirmation with face-turning was
later than that of agreement, as well as the timing structure without face-turning.
The result of the median test shows significant difference between medians of
their timings (p = 0.013). The difference was significantly increased by face-
turning because of not significant difference in case of Confirmation without
face-turning. This result supports Hypothesis 2.

4.2 Analysis of the Timing Structures on the Reaction by Body
Motion

We analyze the timing structures IUM and IMM on body motion of Reaction.
The body motion did not occur for every utterance of Confirmation in the whole
of the experiments. Table 1 shows frequency of the occurrence in each experi-
mental situation.

Distributions of IUM

The distributions of IUM are shown in Fig.9. Agreement-Reaction occurred more
frequently between 0 and 2000msec. Disagreement-Reaction tended to occur fre-
quently in two parts of span (0 ∼ 1000msec and 2500msec ∼).

The medians of timings of agreement- and disagreement-Reaction for Confir-
mation without face-turning were 820msec and 770msec, respectively. The quar-
tile deviations of their timings were 720msec and 2925msec, respectively. And the
medians of timings of agreement- and disagreement-Reaction for Confirmation
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Fig. 9. Histograms of IUM

with face-turning were 295msec and 2690msec, respectively. The quartile devia-
tions of their timings were 573msec and 2060msec, respectively.

Distributions of IMM

The distributions of IMM are shown in Fig.10. IMM has distributions and statis-
tics similar to IUM because we regulated Icnf .

Test of Hypothesis 3
Although distributions of IUM and IMM were similar to IUU and IMU, sample
numbers of the distributions were less and uneven as shown in Table 1. We shelve
test of Hypothesis 3 by the statistical significant difference.

Table 1 shows that the body motion tends to occur as below.

	 For Confirmation without face-turning, the respondent more frequently pro-
duces bodymotion in case of disagreement-Reaction than agreement-Reaction.

	 For Confirmation with face-turning, the respondent more frequently produces
body motion in case of agreement-Reaction than disagreement-Reaction.

We discuss the reason of this tendency in the next section.
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5 Discussion–What Does the Face-Turning Action Imply
in Consensus Building Communication?

We first consider the reason why agreement-Reaction occurred at early timing,
based on the discussion by Fujiwara et al. [4]. If the respondent reacts at late
timing, his partner may imagine that he is not sure which is better. The re-
spondent, therefore, wants to convey agreement to his partner soon. In case
of disagreement-Reaction, the respondent needs to choose his words with full
respect for his partner and think how to Reaction in order to make the part-
ner understand his intention. Therefore, disagreement-Reaction occurred at late
timing. Also, the timing structure must be an implicit rule to express agree-
ment/disagreement.

We confirmed that face-turning of Confirmation increased the difference be-
tween the timing of agreement- and disagreement-Reaction. Based on the
approach-avoidance model by Argyle et al. [2], we consider that the face-turning
suggests the approach action. Therefore, the respondent produced agreement-
Reaction, which is regarded as the approach response, at earlier timing and he
produced disagreement-Reaction, which is regarded as the avoidance response,
at later timing. Also, the face-turning often induces the reaction. This inducibil-
ity can be confirmed from a result that the quartile deviation of timings of
disagreement-Reaction for Confirmation with face-turning (Fig.7(d)) was much
smaller than that without face-turning (Fig.7(b)). The face-turning has the po-
tency inducing the partner to react by utterance within a certain temporal inter-
val. Through these results, we consider that the face-turning controls the timing
of partner’s reaction and elicits his internal state. The dialogists can build up a
sense of dialogue timing by producing the explicit event of face-turning.

As shown in Table 1, the face-turning promoted the body motion suggest-
ing agreement and restrained the motion suggesting disagreement. When the
listener receives Confirmation without face-turning, he is not pressured by part-
ner’s observation. Therefore, he does not need to express agreement by using
body motion excessively. On the other hand, he produces the motion suggest-
ing disagreement unconsciously. In case of Confirmation with face-turning, it
is a kind of Reaction with disagreement that he does not produce the motion.
He nods to convey agreement to the partner excessively, and he often suggests
disagreement without the motion. Face-turning opens new dialogue channel of
body motion, and it is possible to change the meaning of producing the motion.

It is difficult to detect false agreement/disagreement, i.e. lie, when confirm-
ing partner’s intention without face-turning, because the timing of agreement-
reaction is almost the same as that of disagreement-reaction. By producing the
face-turning, the dialogists can observe the reaction by body motion and estimate
partner’s real agreement/disagreement by sensing the timing of the reaction. We
actually turn our face toward partner when we cannot understand partner’s in-
ternal state and want to understand the state surely in daily communication.
Face-tuning is an action to probe partner’s mind5.

5 We have proposed a new proactive human-machine interaction model, Mind Probing.
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6 Conclusion

We made some hypotheses about the relations between the timing of the lis-
tener’s reaction for the confirmation of his internal state by the speaker and the
state. We analyzed some consensus building dialogues by an experimental coop-
erator and a subject to test the hypotheses. Especially, we focused on the action
that the speaker turns his face toward the listener as the confirming action and
analyzed how it influences the timing structures.

As the results, the timing of the reaction by utterance suggesting disagreement
was later than that of agreement, and the face-turning increased the difference
between the timing of the reaction suggesting agreement and disagreement. We
consider that the face-turning is a trigger to make the dialogists build up a sense
of dialogue timing. The face-turning also promoted the body motion suggesting
agreement and restrained the motion suggesting disagreement. It was contrary
to result for the confirmation without face-turning. This result must be a feature
of dialogue opening the dialogue channel of body motion.

In future work, we need to increase the size of the dialogue corpus and evaluate
reliability of these results. We will design the human-machine interaction system
able to estimate user’s internal state based on findings of this work.
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Abstract. This paper deals with the results of a machine learning ex-
periment conducted on annotated gesture data from two case studies
(Danish and Estonian). The data concern mainly facial displays, that
are annotated with attributes relating to shape and dynamics, as well
as communicative function. The results of the experiments show that
the granularity of the attributes used seems appropriate for the task of
distinguishing the desired communicative functions. This is a promising
result in view of a future automation of the annotation task.

1 Introduction

The purpose of this paper is to present the results of a machine learning experi-
ment conducted on multimodal data annotated by means of the MUMIN coding
scheme (Allwood et al. 2007).

An increasing number of research projects and research initiatives concern
themselves with the development of annotated multimodal corpora, i.e. anno-
tated resources where the various modalities involved in human interaction, or
human-computer interaction, are recorded and annotated at many different lev-
els (Martin et al. 2007). The MUMIN framework is intended as a general tool for
the study of multimodal human behaviour, and focuses on specific communica-
tive aspects of this behaviour, thus providing a complementary and important
perspective to frameworks dedicated to detailed analyses of the physical char-
acteristics of gestures. It could also be used to add a layer of functional gesture
interpretation to large state-of-the-art multimodal corpora such as those built
in the AMI (Carletta 2007) and CHIL (Mostefa et al. 2007) projects.

In the machine learning experiment described here, we investigate how well the
annotation categories relating to the gesture shape and dynamics can be used to
distinguish different functional categories of gesture types. Our immediate goal
is to find an indication of whether these features have the correct granularity in
this respect. More generally, machine learning of the functional categories can
pave the way to the automation of this type of annotation.

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 38–49, 2008.
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We start by briefly explaining the MUMIN coding scheme in Section 2; then
we describe the datasets used in the experiment in Section 3; we present the
results in Section 4 and conclude in Section 5.

2 The MUMIN Coding Scheme

The MUMIN coding scheme, developed in the Nordic Network on Multimodal
Interfaces MUMIN, is a general framework for the study of gestures (it covers
at the moment hand gestures, facial displays and body posture) in interpersonal
communication. The framework focuses on the role played by multimodal ex-
pressions for feedback, turn management and sequencing. This focus, as we shall
see, drives the selection of gestures to be annotated as well as the choice of avail-
able annotation attributes. The framework builds on previous studies of feedback
strategies in conversations (Clark and Schaefer 1989, Allwood et al. 1992), re-
search on non-verbal behaviour (Duncan and Fiske 1977, Kendon 2004, McNeill
1992) and work where verbal feedback has been categorised in behavioural or
functional terms (Allwood 2001a and 2001b, Allwood and Cerrato 2003, Cerrato
2007). The MUMIN scheme is neutral with respect to the tool used to carry
out the annotation. Since it consists of a number of hierarchically organised at-
tributes, it can easily be implemented in different formalisms. In this study, we
have used the ANVIL tool (Kipp 2001).

The annotation work consists of a number of preliminary steps i.a. finding
appropriate video material, implementing the coding scheme as required by the
annotation tool chosen and transcribing the speech of the dialogue participants.
The actual gesture annotation proceeds then by selecting gestures that have
a communicative function relating to either feedback, turn management or se-
quencing1 (possibly several functions at the same time). In this study, we will
focus on feedback and turn management. Sequencing, which is intended to cap-
ture the role played by gestures in discourse structuring and segmenting, is more
relevant for monologues and narratives than for the type of interaction targeted
in this study.

Then each gesture is assigned several labels relating to its communicative
function(s), shape and dynamics as well as semiotic type. If there is a relation
with another cooccurrent gesture or speech, this is also annotated by means of
a so-called crossmodal attribute, not considered here. Below we briefly describe
the categories available in the MUMIN coding scheme, especially the functional
categories used in this study. A detailed description and discussion is provided in
Allwood et al. (2007). The categories for the annotation of feedback, turn man-
agement and semiotic types are listed in Table 1. For feedback, a basic distinction
is made between Give and Elicit (whether the speaker is giving feedback to the
interlocutor or asking for feedback). In both cases, there is a Basic attribute that
says whether there is only acknowledgement of perception, or whether there are
signs of having or not having understood the message that is being conveyed. An
additional attribute is related to whether the feedback is one of acceptance or
1 In other words, not all gestures are selected for annotation.
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Table 1. Functional annotation features and semiotic types

Behaviour Attribute Value
Feedback Give Basic ContactPerception (CP),

ContactPerceptionUnderstanding (CPU)
Acceptance Accept, Non-accept
Additional emotion/Attitude Happy, Sad, Surprised, Disgusted,

Angry, Frightened, Other
Feedback Elicit Basic CPU, CP

Acceptance Accept, Non-accept
Additional emotion/Attitude Happy, Sad, Surprised, Disgusted,

Angry, Frightened, Other
Turn Management Turn gain Turn take, Turn accept

Turn end Turn yield, Turn offer, Turn complete
Turn hold Turn hold

Semiotic type Indexical Deictic, Non-deictic (e.g.: beats)
Non-indexical Iconic, Symbolic

Table 2. Annotation features for facial displays

Behaviour Attribute Value
Face General face Smile, Laugh, Scowl, Other

Eyebrow movement Frown, Raise, Other
Eye movement Extra-Open, Close-Both

Close-One, Close-Repeated, Other
Gaze direction Towards-Interlocutor, Up,

Down, Sideways, Other
Mouth openness Open mouth, Closed mouth
Lip position Corners up, Corners down,

Protruded, Retracted
Head movement Down, Down-Repeated, BackUp,

BackUp-Repeated, BackUp-Slow,
Forward, Back, Side-Tilt, Side-Tilt-Repeated,
Side-Turn, Side-Turn-Repeated, Waggle, Other

refusal. A third option is to add a value for Emotion. Turn management is coded
by the three general features Gain, End and Hold. An additional dimension con-
cerns whether the turn changes in agreement between the speakers or not, thus
giving rise to different values for Gain and End. The semiotic categories are
based on Peirce (1931). They correspond roughly to pointing gestures (Indexical
Deictic); beats (Indexical Non-deictic); gestures expressing a semantic feature
by similarity, including metaphoric gestures (Iconic); and emblems (Symbolic).
Table 2 shows the features available in MUMIN to describe shape and dynamics
of facial displays (hand gestures and body posture features are also part of the
scheme but were not considered for this experiment). The categories are inten-
tionally coarse-grained, in that we only want them to be specific enough to be
able to distinguish and characterise non-verbal expressions that have a feedback,
turn management and sequencing function.

3 The Annotated Data

Two datasets were used in this study, one containing Danish multimodal data
and one Estonian. Additional case studies are presented in Allwood et al. (2007).
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3.1 The Danish Data

The Danish data used in the experiment consist of a one minute clip from an
interview from Danish television. The dialogue between a male interviewer and
an actress was transcribed and then all the gestures were annotated indepen-
dently by two experienced coders. The purpose of producing this first version of
the data was to test the reliability of the coding scheme, which proved in fact
quite good in that we obtained k scores (Carletta 1996) between .7 and .96 for
most of the attributes2.

To produce the dataset used in the machine learning experiment, the coding
manual was slightly revised and the inconsistencies found in the first version
were evened out on the basis of the revised guidelines. Since the video clip con-
tains many close-ups of the faces of the two dialogue participants, in many cases
the hands and the body are not visible, so that most of the annotated gestures
in these data concern facial displays. Therefore only the annotation of facial dis-
plays is considered in the machine learning experiment described in this paper.

3.2 The Estonian Data

The Estonian dialogue consists of two half-an-hour long scenario-based conversa-
tions. In the first one, the task was to discuss the design of a new school building,
and the three participants assumed the roles of an architect, a building designer,
and a council representative. In the second scenario, the task was to discuss the
inspection of the new school building and the participants had the roles of an
architect, a project manager, and a council representative. The participants were
three students. Although the dialogues were based on controlled scenarios, the
participants behaved naturally, and we can assume that their non-verbal activity
(hand gestures, and facial expressions) is representative for the current purposes.

Two video clips about 2 minutes each from each dialogue were selected for
annotation, and they were annotated by a non-expert, native Estonian speaker,
who first went through a short introductory course on the topic. The annotation
was then checked by the expert annotator.

The annotation scheme was based on a slightly modified version of the MU-
MIN annotation scheme. The eye and eyebrow movement as well as lip and
mouth opening were left out since the video was not considered accurate enough
for these annotations. The tag names were also slightly modified so as to make
them easier to be remembered; their meaning, however, remained the same and
the annotations can thus be compared with the Danish ones.

4 Experimenting with Machine Learning

4.1 The Hypothesis

The machine-learning experiments were set up to investigate how well the se-
lected attributes could distinguish different functional categories of facial and
2 See Allwood et al. (2007) for a discussion.



42 K. Jokinen, C. Navarretta, and P. Paggio

gesture categories. Our immediate goal is to find an indication of whether the
attributes concerning gesture shape and dynamics have the correct granularity
in this respect. But a more general related question is whether in future the
functional annotation could be automated at least partly. Given the fact that
data on the gesture shape and dynamics can be obtained through the use of
cameras and sensors, this is clearly a very relevant question.

4.2 The Setup

We used the Weka software package (Witten and Frank 2005) and performed
various experiments on the following attribute classes: feedback, semiotic type,
and turn management.

Table 3. Input statistics

no. face no. face
displays attributes

DK 51 7
Est 89 7

Total 140 7

The input statistics are given in Table 3. In order to be able to combine
the annotations from both datasets, the attributes were simplified as already
explained. The list for facial displays is shown below in the format used in
WEKA:

@relation face
@attribute General-Face{Neutral,Smile,Laugh,Sulk,Other}
@attribute Gaze {None,Interlocutor,Up,Down,Side,Other}
@attribute Head {Static,Nod,Nod-R,Jerk,Forward,Backward,

Side-Tilt,Side-Tilt-R,Side-Turn,Shake,Waggle,Other}
@attribute Emotion-Attitude {Neutral,Happy,Sad,Surprised,

Disgusted,Angry,Frightened,Certain,Uncertain,Interested,
Disappointed,Satisfied,Other}

@attribute Feedback {None,CPU,CP,Accept,Non-accept,Elicit,Emphasis}
@attribute Semiotic {None,Index-Deictic,Index-Non-deictic,Iconic,

Symbolic}
@attribute Turn {None,Take,Accept,Yield,End,Hold}

There are two main differences with respect to the MUMIN model, in addition to
the already mentioned missing attributes for Eyebrow, Eye, Mouth and Lip. One
is the use of null values (Neutral and None) in cases where some of the attributes
have not been given a value in the annotation; the other is an apparently different
set of Feedback attributes. In reality, although the set used in the experiment has
less expressive power (only one value can be chosen to the Feedback attribute
contrary to the original MUMIN model where several Feedback values can be
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Table 4. Simplified feedback attributes

MUMIN attributes Simplified attributes

FeedbackGive-Basic-CPU CPU
FeedbackGive-Basic-CP CP
FeedbackGive-Basic-CPU/Acceptance-Accept Accept
FeedbackGive-Basic-CPU/Acceptance-Non-accept Non-accept
FeedbackElicit-Basic-CPU Elicit
- Emphasis

instantiated at the same time), the two attribute sets are comparable, as shown
in Table 4. The Feedback value Emphasis was meant to pick up cases were the
speaker especially emphasises the content of her contribution. The hypothesis
was that this kind of behaviour would cooccur with the Semiotic-type=Index-
Non-deictic, i.e. with beats. Although the Estonian data seems to support this,
emphasis also seems to occur with other semiotic types.

4.3 Classification

The classification experiments give us information about the predictive power of
the attribute set, i.e. how well the given attributes predict the functional class
in each case. We experimented with different classification algorithms provided
in Weka (Support Vector Machines, Decision Trees, and Naive Bayes), and the
best results were produced with the SVM. The classification results below are
based on the SMO (Sequential Minimal Optimization, Platt 1998) version of the
algorithm which is implemented in Weka. The experiments used linear kernel,
and ten runs with 10-fold classification.

Table 5. The classification accuracy of communicative functions on the Estonian and
Danish data

Facial displays
Dataset ZeroR SVM

Estonian

feedback 46.11(+/- 3.75) 69.86(+/-16.43)
semiotic type 56.25(+/- 2.20) 82.22(+/-19.74)
turn 70.83(+/- 5.44) 73.06(+/-14.93)

Danish

feedback 45.00(+/- 8.50) 86.33(+/-13.37)
semiotic type 72.67(+/- 9.66) 92.33(+/- 9.94)
turn 62.67(+/- 6.44) 80.33(+/-13.37)

Both combined

feedback 30.71(+/- 3.45) 64.29(+/- 8.25)
semiotic type 62.14(+/- 3.45) 81.43(+/- 9.04)
turn 67.86(+/- 3.76) 72.86(+/- 6.56)
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As the baseline, we used the accuracy results from Weka’s ZeroR, which
predicts the mode for a nominal class, i.e. the most frequent attribute value,
and the accuracy is thus the frequency of the particular most frequent category.

For the three classes, the accuracy results (= percentage of correctly classified
elements of the whole input set) are as in Table 5. On the confidence level 0.01,
Feedback and Semiotic type using all datasets (Estonian, Danish as well as the
combined data set) can be predicted more accurately than the baseline. On a lower
confidence level 0.05, the accuracy is significantly better than the baseline on all
datasets except for the Turn attribute in the Estonian and the combined data.

4.4 Clustering

We also experimented with Weka’s Expectation-Maximization algorithm to in-
vestigate if the annotated gestures and facial expressions exhibit any meaningful
patterns on the basis of the annotation features. The EM algorithm compares
the data points and their similarity and clusters the most similar points together
while trying to maximize the overall probability of the cluster distributions so
that the clusters are the most different ones. Thus there is no need to provide
any particular number of clusters in advance, because the algorithm forms these
on the basis of the probability distribution of the individual features.

The results are similar to those reported in Jokinen and Ragni (2007): the
clustering of facial data produced a number of patterns. First of all, in the Dan-
ish data, the facial data group into three clusters (see Fig. 1) which seem to
correspond to Feedback values of Accept (cluster 0), CP or No feedback (Clus-
ter 1) and Elicit (Cluster 2). Since CP can be considered a rather mild feedback,
where no understanding signs are given, it makes sense for it to cluster together
with No feedback. Accept and Elicit, on the other hand, are very different, so it
is reassuring to see that they make up distinct clusters.

Fig. 1. Feedback clusters in the Danish data. The attributes on the y axis are from
the top: Emphasis, Elicit, Non-accept, Accept, CPU, CP and No-feedback.
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Fig. 2. Feedback and gaze in the Estonian data. The attributes on the y axis are from
the top: Emphasis, Elicit, Non-accept, Accept, CPU, CP and No-feedback.

The clustering data also show some interesting correspondences between Feed-
back and Turn attributes and other, especially non-functional attributes. In par-
ticular, both the Danish and the Estonian datasets exhibit a relation between
Feedback and other attributes, and the Estonian data set between Turn and
other attributes.

To start with feedback, the following patterns emerge in the Danish data be-
tween Gaze and Feedback: gaze to Interlocutor seems to coincide with Accept
while gaze to Side, Other or Down corresponds to No feedback. Also Head and
Feedback pattern together: nods are accompanied by Accept, while side-turns
and side-tilts have No feedback. Head is usually Jerk or leaning Forward if Feed-
back is Elicit. It must be remembered that the data only show gesture behaviour
in two subjects: therefore, these patterns may only concern these two specific in-
dividuals. However, both the gaze patterns and the head movements also confirm
our intuitions about the way in which feedback is expressed.

If we now look at feedback in the Estonian data, we see that Nod and Accept
go together as in the Danish study. However, side-turns as well as Head Forward
seem to be used with CPU and Elicit. This could be an interesting difference
in the facial feedback strategies. Whether this is due to individual differences,
different cultures or the different communicative situations, however, cannot
be established on the basis of this very limited experiment. Still considering
feedback in the Estonian data, interesting and plausible correspondences emerge
between Feedback and Gaze as shown in Fig. 2. With Elicit the gaze is always
towards the interlocutor, although Gaze Interlocutor also occurs together with
other feedback functions. The same tendency can be noticed in the combined
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datasets as well. Acceptance feedback often occurs together with Gaze Down,
and sometimes also with Gaze Interlocutor. On the other hand, Gaze Down is
also present with CPU in addition to Accept. Finally, interesting correspondences
are found in the Estonian data between Feedback and Turn. Here CPU seems
to coincide with Turn Hold, while Accept mostly goes with Turn Take and Turn
Hold. All examples of Turn End have Elicit feedback function (this makes a lot
of sense: the speaker stops talking and asks for feedback) although Elicit also
occurs when Turn Hold. Looking at Turn and Gaze, Turn End goes together
with Gaze Interlocutor (the speaker looks at the interlocutor to ask for feedback
when releasing the turn), and Gaze Down goes rather systematically with Turn
Hold (by not looking at the interlocutor, the speaker makes it harder for them
to interrupt).

4.5 Attribute Selection

We also checked the attributes with the Weka’s attribute selection algorithm. At-
tribute selection involves searching through all possible combinations of

Table 6. 10-fold cross validation for facial displays

category average merit average rank attribute
Danish Feedback 51.049 +- 3.605 1.2 +- 0.4 5 Turn

45.487 +- 5.31 1.8 +- 0.4 3 Head
27.423 +- 1.998 3 +- 0 2 Gaze
21.907 +- 1.58 4.1 +- 0.3 6 Semiotic
17.598 +- 2.109 4.9 +- 0.3 4 Emotion-Attitude
6.773 +- 0.868 6 +- 0 1 General-Face

Danish Turn 59.165 +-14.128 1.3 +- 0.9 4 Emotion-Attitude
51.14 +- 3.215 1.9 +- 0.3 7 Feedback
32.386 +- 3.667 3.3 +- 0.46 3 Head
32.124 +- 5.985 3.5 +- 0.67 1 General-Face
18.268 +- 2.908 5 +- 0 2 Gaze
7.2 +- 0.724 6 +- 0 6 Semiotic

Estonian Feedback 90.891 +-11.137 1 +- 0 3 Head
58.222 +- 6.309 2.1 +- 0.3 6 Turn
42.375 +- 7.228 3.2 +- 0.6 7 Emotion-Attitude
39.892 +- 2.63 3.7 +- 0.46 2 Gaze
22.126 +- 1.722 5 +- 0 4 Semiotic-Type
9.252 +- 1.757 6 +- 0 1 General-Face

Estonian Turn 58.094 +- 5.762 1 +- 0 5 Feedback
35.177 +- 4.741 2.2 +- 0.4 3 Head
32.263 +- 5.409 2.8 +- 0.4 2 Gaze
12.754 +- 1.454 4.3 +- 0.46 4 Semiotic-Type
9.992 +- 2.196 4.7 +- 0.46 7 Emotion-Attitude
1.468 +- 0.098 6 +- 0 1 General-Face

Both Feedback 155.533 +- 9.533 1 +- 0 3 Head
95.075 +- 7.603 2.2 +- 0.4 5 Turn
79.858 +- 5.603 3.3 +- 0.9 2 Gaze
74.585 +- 5.531 3.8 +- 0.6 6 Semiotic
64.378 +-10.952 4.7 +- 0.64 4 Emotion-Attitude
21.258 +- 2.781 6 +- 0 1 General-Face

Both Turn 133.485 +-37.22 1.3 +- 0.9 4 Emotion-Attitude
94.752 +- 6.475 1.9 +- 0.3 7 Feedback
61.957 +- 5.825 2.9 +- 0.3 3 Head
26.711 +- 3.925 4 +- 0.45 2 Gaze
20.951 +- 3.864 5.1 +- 0.54 1 General-Face
17.415 +- 1.828 5.8 +- 0.4 6 Semiotic
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attributes in the data so as to find which subset of attributes works best for
prediction. This task involves two algorithms, one to search the attributes and
the other to evaluate the algorithm. We used the Chi-square attribute evaluation,
together with the built in Ranker. The results for the two classes Feedback and
Turn Management using 10-fold cross validation are in Table 6. These data show
that the Head features are quite important to discriminate between Feedback
types in both datasets, and especially in the Estonian data. We have already
noted the cooccurrence of Nod and Feedback Accept values in both cases. To
distinguish between Turn values, on the other hand, the Head features are less
important than Feedback in both datasets. This points at the possibility that
feedback is a more general category than turn management. The most discrim-
inating attribute in the Danish data is in fact Emotional attitude, which seems
to indicate that the interaction in the Danish video is more emotional.

5 Conclusion

In this paper we presented the MUMIN categories for the annotation of the
communicative functions of gestures in multimodal corpora, with focus on feed-
back and turn management. Then we described various machine learning ex-
periments conducted to investigate the adequacy of the annotation categories
in distinguishing the various functions of facial displays, and to see whether
the attributes for gesture shape and dynamics have the appropriate granularity.
The experiments were run using Weka (Witten and Frank, op. cit.) on datasets
extracted from Danish and Estonian annotated conversations.

The results of the classification experiments indicate that feedback and semi-
otic type in our datasets can be predicted more accurately than the baseline
(results in Weka’s ZeroR) in most cases. The results of clustering indicate cor-
respondences between feedback and turn attributes on the one hand and non-
functional attributes on the other – correspondences which confirm intuitions
on the cooccurrence of certain gesture types and particular communicative func-
tions. Similarly, the analysis of attribute selection in Weka indicates that head
features are more important to distinguish feedback categories than to discrim-
inate between turn values.

Although the obtained results are only tentative because of the limited size
of the datasets, they indicate that machine learning algorithms can be usefully
applied on data extracted from multimodal corpora annotated according to the
MUMIN scheme. They also show that the granularity of the attributes for the
annotation of facial displays seems appropriate for the task of distinguishing the
desired communicative functions. An important aspect we haven’t considered
is modelling of the context in which the gestures occur. It is a well-known fact
that gestures (like in fact speech) may be ambiguous out of context. Therefore,
taking into account preceding gestures as well as the speech context is likely to
produce more accurate and realistic results. This will be done in future work.

In spite of these limitations, the results of the experiment are encouraging
given the fact that the granularity of gesture annotation is quite coarse, and



48 K. Jokinen, C. Navarretta, and P. Paggio

therefore relatively easy to annotate. In fact, coarse-grained gesture annotation
has also been adopted in large corpus building projects such as the already cited
AMI and CHIL, so the issue of whether such granularity is enough has general
interest. Another related issue is whether the MUMIN functional categories can
be linked to automatically recognised form features. Since manual annotation
is costly and time-consuming, several projects have started using cameras and
sensors for automated annotation, e.g. Campbell (2008) and Douxchamps and
Campbell (2008). Thus, this is clearly a very relevant future possibility in which
our annotation scheme may prove a useful starting point.
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Abstract. The research detailed in this paper represents the confluence of 
various vision technologies to provide a powerful, real-time tool for human 
behavioural analysis. Gesture recognition algorithms are amalgamated with a 
robust multi-person tracker based on particle filtering to monitor the position 
and orientation of multiple people, and moreover to understand their focus of 
attention and gesticular activity. Additionally, an integrated virtual video 
director is demonstrated that can automatically control active cameras to 
produce an optimum record of visual events in real-time. 

Keywords: Person Tracking, Gestures, Head Orientation, Active Camera. 

1   Introduction 

The manual annotation and analysis of human interactions, ‘who does what’ during a 
meeting for example, is a time-consuming and laborious task. The creation of 
transcriptions and subsequent data mining from such a huge data-set is always open to 
ambiguities, as one transcriber will notice or interpret events that another will 
overlook. The Holy Grail for annotators would be the creation of a fully automated, 
accurate and consistent tool that effortlessly provides a complete and comprehensive 
breakdown of which people being monitored did what, where and when.  

This topic is being addressed with increasing research effort and the CHIL and 
AMI European projects [1,2] are two prime examples. However, when a scene is 
complex and the number of people to be observed is large, the problem becomes 
computationally constraining. Due to the enormous complexity of the systems 
involved in people monitoring, in this paper we will only present the integration of 
video technologies, however an analysis of appropriate audio technologies and their 
integration with vision tools can be found in [3]. Needless to say, a wealth of 
information can be gleaned from the observation of non-verbal communications [4].  

To visually monitor human gestures and interactions effectively, the exact location 
of all participants and their head orientations must be ascertained. For decades, 
extensive research has been conducted on multi-person tracking from video sources, 
however a robust solution that can handle many of the scientific challenges present in 
natural scenes such as occlusions, illumination changes and high-dimensional motion 
is hard to realise. Particle filter tracking [5] is a promising and robust approach that 
can now be implemented in real-time thanks to advances in computing power. The 
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positions of multiple people in the environment can be tracked down to an average 
error of less than 10cm, even under heavy occlusion. Along with knowledge of body 
position, a person’s body posture (e.g. standing, sitting, etc.) should also be 
monitored. These additional parameters can also be obtained from the same tracker by 
increasing the state-space, at the cost of increased complexity.  

The tracking of body parts (as opposed to the whole) has also received a great deal 
of attention over the years. For applications such as gesture recognition, there are 
inherent minimum observable size constraints; tiny movements potentially providing 
valuable information could otherwise go undetected. Therefore, to ensure that 
adequate images are available for gesture recognition, active cameras are crucial.  

There are two main approaches commonly employed for the driving/steering of 
active cameras in a multi-person environment. The first requires a skilled human 
operator(s) to steer all cameras simultaneously towards the multiple participants. The 
second requires the complete integration of a robust person tracker to automatically 
handle camera allocation and steering in real-time. 

In this paper the various technologies we developed1 to automatically annotate 
visually-apparent human behaviour will briefly be explained and proven through real 
life experimentation. We will show how these were integrated to produce a cohesive 
system that provides a real-time output of target position, focus of attention, fidgeting 
activity and static arm gestures, to name but a few. We will illustrate how information 
flows around the system and how we might infer some basic human activities. In 
addition we will demonstrate how our system can create optimal visual recordings for 
multiple targets by steering active cameras using body position and head orientation. 

2   System Architecture 

The system is composed of three 
types of modules: those which 
process images and output 
features (denoted in Fig. 1. by a 
rectangle); those which take 
features as inputs and combine 
these to make others (denoted by 
an oval); and those which receive 
features as an input and act upon 
them (denoted by a diamond).  

2.1   Particle Filter Based Location and Pose Tracker 

Classical solutions to vision based location and pose tracking factorise the problem 
into background suppression, morphological noise filtering and blob classification. 
They usually require the engineering of complex cascades of low-level filters whose 
behaviour is difficult to understand and which require the tuning of many parameters 
to particular scene conditions. We, instead, adopt a principled Bayesian approach to 
track position and body posture whose core is a generative likelihood function. The 
                                                           
1 This research was funded under EU projects CHIL and NETCARITY. 

Fig. 1. System Schematic 
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role of the likelihood is to score a hypothetical target pose by analysing a set of 
calibrated input images. Pose tracking is then formulated as a stochastic filtering 
problem, and solved by propagating the best-scored hypotheses according to a simple 
model of pose dynamics.  

For the purpose of this paper, a pose is specified in terms of the target’s 2D 
position on the floor, horizontal torso orientation, torso inclination, head pan and tilt, 
together with a binary label for sitting and standing. These features have been chosen 
because they can be extracted from the raw video signal and are of high interest when 
analysing interactions. 

2.1.1   Modelling Pose Appearance 
We model the visual appearance of a person using: 

• A Coarse, volumetric, description of human body shape for different poses; 
• Body part and viewpoint based representation of target colour, in the form of 

head, torso (articulated about the waist) and legs histograms. 

For a given pose hypothesis, the shape model is used to identify the triple of image 
patches where head, torso and legs are expected to appear under that hypothesis. 
Within these patches, we use colour histograms to describe the appearance of the 
body parts. Since histograms summarise their colour statistics, their use in a 
localisation task offers robustness to small misalignments, slight illumination changes 
and to noise deriving from non-modelled articulated motion. Part-based definition of 
the model emphasises appearance independence that usually holds between the 
different body parts due to skin colour and clothing.  

 

Fig. 2. 3D shape of a standing person and its rendered silhouette. To the right: rendering of a 
standing pose with an inclined upper body and misaligned head orientation, and a sitting pose. 

Fig. 2. shows the part-based 3D target model assembled from a set of rigid cone 
trunks. To obtain its image projection a quadruple of 3D points is computed which 
represent the centre of the feet, hips, shoulders and the top of head. These points are 
projected onto the camera frame using a calibrated camera model. The segments 
joining these image points define the ‘backbone’ around which the body profile is 
drawn with a piece-wise linear offset from this axis. The profile width, W, of the torso 
and hips changes with the relative orientation, α, of the body to the observer, 
according to w(α) = 0.7 + 0.3|cos(α)|. Similarly, the relative head orientation β is 
taken into account to modulate the projected head width. The head patch also has a 
horizontal offset O from the axis which scales as a function of β: o(β) = 0.38·sin(β).  
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Fig. 3. Reference histogram rendering procedure 

For a sitting pose we set the height of the 3D hip centre approximately to the chair 
height and ignore the legs trunk.  

Within the body parts identified by the shape model, the appearance of the target is 
described by one colour histogram per part. The reference histogram is created for a 
given pose as depicted in Fig. 3. The basic idea is to record a set of key views of the 
target prior to tracking, to extract the corresponding descriptions (i.e. colour 
histograms) for each body part and to then generate the histograms for a new pose and 
view by interpolation. Given the spatial orientation γ of a body part, the set of 
neighbouring model views V(γ) that point towards the camera is found. Corresponding 
key view histograms Hv are combined to get the reference appearance by interpolation  
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direction of pose orientation γ and key view orientation γv. This method supports 
histogram rendering from any viewing orientation, including top-down views. In 
setups where only lateral views are available (typically cameras placed in the corners 
of a room) it is sufficient to acquire key view histograms for side views only (like 
those seen in Fig. 3.), and interpolation is done using the two closest reference views. 

2.1.2   Appearance Likelihood 
To score a given pose hypothesis, x, on a new input image, I, we extract histograms 
from the image areas identified by shape rendering. These histograms are then 
compared to reference histograms rendered as described, using a similarity measure 
derived from Bhattacharyya-coefficient based distance: if ah, at, al, is the area of body 
part projections and Hh

z, H
t
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l
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m denote normalised extracted and 
modelled histograms, the assigned likelihood value is: 
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with histogram distance d given by (where index i scans all colour bins) 
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Parameter σ controls the selectivity of this function and is set empirically to 0.12. 

2.1.3   Particle Filtering 
An occlusion robust particle filter [5,6] is implemented to jointly track the location and 
pose of multiple targets based on the appearance likelihood defined above. Particle 
filtering propagates a sample-based representation of the posterior density over target 
pose. A pose hypothesis, or particle, is embodied by a 7–dimensional vector: (x,y) 
location, head pan/tilt, body pan/tilt, plus a binary dimension for sitting/standing. The 
particle set representing the probabilistic estimate at time t is projected to time t+1 by 
adding zero-mean Gaussian noise to 
the components of each particle. After 
prediction, pose likelihoods are 
computed on the different views and 
particle weights are assigned; weighted 
re-sampling is then finally applied. 
After enrolment (see below), the initial 
particle set is sampled from a Gaussian 
distribution centred in the hot spot 
position. The probabilistic tracker 
outputs the expectation over the 
current, weighted particle set. Fig. 4. 
shows a typical real-time output. 

2.1.4   Target Detection and Model Acquisition 
Reference histograms and shape parameters are acquired prior to tracking, in an 
enrolment phase. To achieve this without manual intervention a virtual hot spot of the 
scene is continuously monitored using multiple cameras. To enrol, each person visits 
the hot spot area upon entering. Target detection within this area is based on the 
matching of extracted image contours and the virtual silhouette of the shape model 
rendered for different target heights, widths and positions (pose is fixed to standing 
upright). If the best matching result is above a threshold for a number of consecutive 
frames, a target is detected. Reference histograms are stored for the best matching 
result, together with the target’s physical width and height (see Fig. 5. for examples). 

 

Fig. 5. Enrolment 

Fig. 4. Real time particle filter output 
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2.2   Focus of Attention Module 

The majority of the features required to determine focus of attention are automatically 
derived by the particle filter and object trackers, i.e. target location, head pan and tilt, 
laptop and pens, however other objects such as table, whiteboard can be manually 
inputted. The focus of attention of each target is then estimated by projecting a ray 
from the person’s head centroid in the direction of his head orientation and then 
whatever the ray intercepts first is deemed to be the focus of his attention. 

2.3   Hand Tracker 

The output of the particle filter tracker can be exploited and fused in a multitude of 
ways to derive further features. By passing absolute body position, body posture and 
torso orientation to the hand tracker module and by imposing basic anatomical rules, 
3D regions can be postulated which should contain a target’s hands and shoulder 
joints. From the 3D shoulder points, two spherical volumes are described within the 
environment proportional to the target’s body height (see Fig. 6.(a)). 

Within these regions, candidate hand blobs are located through the application of a 
statistical skin model filter, as in [7], created through the prior observation of hundreds 
of skin regions from our camera video streams. The centroids of appropriately sized 
skin regions inside the projected spheres are re-projected back into 3D space in the 
form of a ray originating from the camera’s origin. This is conducted for all skin 
regions pertaining to the same target in each camera; then using an SVD algorithm the 
minimum distances between rays from other cameras is computed. Providing that the 
closest intersection distance is small (say < 30cm), and that the hypothesised position 
of the 3D hand lies inside the spheres, a hypothetical 3D hand position is created. All 
permutations of skin regions are tested in order to find the best hypotheses, and 
subsequently these are labelled as left and right hands. Left hands are assumed to be 
the leftmost with respect to the torso’s orientation and likewise rightmost for the right. 
The same process is repeated for all targets within the room. 

2.3.1   Pointing and Hand Raising Detection 
The detection and accurate interpretation of dynamic hand gestures is a very 
challenging task. Gesticular actions vary greatly from one individual to another and it 
is often difficult to discern exactly when one gesture begins and another ends. 
Conversely, static gestures (sometimes referred to as postures) such as pointing and 
the raising of the hand, can be generalised as being periods of static hand postures 
punctuating periods of temporal hand movement. 

To decide whether a gesture relates to pointing, the raising of the hand or neither, 
we examine the spatial and temporal stability of the hands and their position with 
respect to the two spheres prescribed.  

The first pointing-gesture criterion to be met is based upon its dwell time. The 
estimated position of the hand, even when it is stationary, will move slightly due to 
the presence of image noise. To compensate for this, a positional variance of 30cm 
(roughly equal to 2 hand widths) was empirically selected, thus if the hand centroid 
does not move more than this during one second the hand is deemed to be stationary.  
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Raised hand region

 

(a) 

1 shoulder 
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(b) 

Fig. 6. (a) Pointing detection, (b) Fidgeting volume 

When a static hand is identified, its Euclidean distance from the shoulder joint is 
measured. When it lies more than 75% of an arm’s length away from the shoulder 
joint (see Fig. 6.(a)) and it does not lie inside the 3D cylinder seen in Fig. 6.(b) a 
pointing gesture is detected. Additionally, if the hand is above the head height, then 
the gesture is deemed to be a raised hand. 

2.4   Fidgeting Detector 

2.4.1   Hand, Head and Body Fidgeting 
Fidgeting is defined as “a condition of restlessness as manifested by nervous 
movements”, and it can reveal important clues about the emotional state and activity of 
an individual [8]. Using visual means, fidgeting signatures can be detected using 
techniques such as optical flow or Memory History Images (MHIs) [9]. However, due 
to ambiguities between the actions say of fiddling with a pair of glasses and writing, it is 
difficult to be sure which is taking place, unless of course a pen can be detected.  

To pinpoint fidgeting, we concentrate our search efforts around the 3D position of 
the head and hands we project back into the 2D images. In these regions the fidgeting 
algorithm searches for temporally unstable skin pixels to construct an MHI 
representing repetitive skin motion. The more often a pixel within a hand or head 
region changes from skin to non-skin, the brighter the corresponding MHI pixel 
becomes. In addition to observing periodic motion, the spatial persistence of the hand 
is also taken into account; this information is provided by the hand tracker. 

In a similar fashion, the amount of body fidgeting is also assessed. However, as the 
colour histogram of the body is only crudely known from the person tracker, in this 
case a thresholded change in pixel colour over time is used to trigger the MHI.  

2.5   Gesture Detector 

2.5.1   Nodding and Shaking of the Head 
To detect whether a head is nodding or shaking it is sufficient to correlate head 
fidgeting events with the head information supplied by the particle filter tracker.  
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Although the fidgeting detector can tell us that a repetitive head movement is taking 
place, it is not always straightforward to determine whether the head is panning or 
tilting from the shape of the fidgeting event. To provide the missing information, the 
pan and tilt values are taken from the head tracker during the past few frames and 
their trend used to make a joint decision. 

2.5.2   Greetings  
The location and subsequent detection of greeting gestures is achieved through the 
projection of imaginary cuboids onto the 2D camera images (see Fig. 10.(a)), which 
connect pairs of standing targets at mid-torso height that are separated by less than 
two arm lengths (~2m). Inside the projected cuboid volumes, hand fidgeting events 
are searched for and if located the hand tracker module is asked to confirm whether 
both targets roughly share a hand location. 

2.6   Object Tracker and Activity Detection 

2.6.1   Laptop and Typing 
To facilitate the detection of typing events, a simple object tracker is employed to 
locate potential laptops on the table’s surface. The laptop model is a basic one based 
on a reference colour histogram and shape (based on the average colour gamut and 
dimensions of several laptops in the lab). To identify a laptop’s location, homographic 
projection is employed using multiple camera images along the plane of the tabletop. 
Where an appropriate footprint is located, its colour signature is then evaluated. 

Typing events are subsequently detected by correlating the position of laptops 
with the results from the fidgeting detector (see Fig. 10. (b) for an example). 

2.6.2   Pen and Writing 
In the case of pens, each one that was to be used in the meeting was fitted with two 
bands of known colours. The pens were then detected using the same algorithm as for 
skin but with a different colour gamut. 

To detect whether writing is taking place, the location of the pen is correlated 
against hand fidgeting events. To provide further corroborating evidence, temporal 
frame differencing is employed using the pen colours as an identifying feature. 

3   Virtual Video Director 

Even with many cameras available, it can often be difficult to manually select (and 
consistently maintain) a good frontal image for a given number of targets. To address 
this ‘best camera’ selection issue, we created a fully automatic means to steer active 
cameras so as to provide optimal views for all tracked targets at all times. 

Our selection strategy computes a camera’s ‘utility’ score, to a given target from 
two derived metrics. The first is based upon the angular distance between the target’s 
face plane and camera position, in combination with the target’s likelihood of 
occlusion. For each target (e.g. Target A in Fig. 7.) a list of face plane to camera angles  
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Fig. 7. Camera Utility Score Calculation 

is calculated (e.g. θA2 and θA1). Then, from a simulated pan and tilt configuration 
orientated towards the centroid of the target’s mid-torso, the 3D shape model of the 
target is projected. Crucially, all other targets are also projected onto the simulated 
camera view to compute the amount of occlusion of, or overlap with, the considered 
target. The angular distance is then multiplied with this occlusion factor to compute the 
camera-to-target utility score. As Fig. 7. shows, Target A is partially occluded in 
Cam1’s view, but is unobstructed in Cam2’s, consequently Cam2 is selected (assuming 
that both have similar angular distance). To avoid excessive camera re-allocation when 
multiple targets are mobile, we introduced a minimum target-camera pairing duration 
of three seconds, i.e. after a camera has been instructed to point towards a target it 
cannot be re-assigned to another target for at least this period. 

As facial pixels generally play a more significant role in gesture analysis, a higher 
importance is placed upon them. Consequently, a further utility factor is calculated by 
summing and normalising the number of pixels that are unobstructed, multiplying 
them by a factor relating to the Euclidean angular distance observed and then 
applying a further factor dependant on whether they belong to the face or torso. 
Another consideration relates to the current pan, tilt and zoom configuration of each 
camera relative to the hypothetical configuration that they would have to be at to 
ideally encapsulate the target in its field of view. This discrepancy is crucial as active 
cameras can only re-orientate themselves at a finite rate.  

The overall utility metric is calculated by adding the two separate considerations 
together in a weighted manner. This weighting is user-controlled that can place a 
higher emphasis on a target’s viewability from a more consistent camera view rather 
than providing a better frontal image at the expense of changing cameras more often.  

Once the most appropriate, available camera for a target has been selected, it is 
commanded to point itself to the mid-torso of the target to optimise the images for 
gesture analysis. If the target moves outside of a central region of the image, a pan or 
tilt is initiated such to map it onto the image centre. The size of the central region is 
arbitrary and can be set to a size appropriate for the application, i.e. if the region is  
 

small, then the camera will be re-orientated more often. In order to maintain a good 
size of target in the field of view, the zoom level of the camera is automatically 
adjusted in accordance with the intra camera-target distance.  
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4   Human Activity Estimation from Observation Fusion 

In this paper a 
tentative attempt at 
human activity de-
tection has been 
made by logically 
combing the various 
outputs from the 
many visual cues 
from either single or 
multiple targets in a 
way shown in Fig. 8. 
In this way, the 
spatio-temporal co-
incidence of features 
gives rise to a certain 
hypothesis about an activity. For example, if a target is fidgeting his hands and they 
are close to the laptop then he probably typing. 

5   Results 

Despite compression artefacts and poor resolution, information about face and body 
pose can be extracted to good precision, an achievement to be rewarded to the 
generative approach under-taken (a quantitative evalua-tion of head pan precision is 
available in [10]). 

The graph presented 
in Fig. 9. shows the out-
put from the fidgeting 
module (i.e. head, hand 
and body fidgeting) 
during a 15 minute pre-
re-corded simulated 
meeting (see Fig. 10. for 
example images), for a 
single tracked target. To 
provide an optimal ob-
servation, the target’s 
fidgeting levels were measured independently for each of the four cameras, 
normalised according to camera-target distances, and then the maximum for each 
feature stored. S can be seen, the graph shows four distinct activity periods: The first 
coincided with the meeting participants entering the room and greeting one another 
(Fig. 10a), then seating. The second repre-sented a typing period (Fig. 10b). The third 
correlated to a period just before the target was expecting to stand and was a little 
restless. The final peak shows where the target shook hands with the others before 
leaving.  

 

Fig. 8. Integration of features to infer higher 
level activities 
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agreement or disagreement
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something, bored

Focus of attention

Greetings -
shaking hands

Leaning forwards or backwards
– listening or being defensive

Fig. 9. Results from fidgeting analysis for Target 1 
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Fig. 10.(a) illustrates a 3D 
bounding box pro-jected onto 
an active camera image in 
between two targets in order 
to detect greeting events. Fig. 
10.(b) shows a clear example 
of a captured ‘typing’ event. 
As hand activity correlated to 
the position of the laptop, a 
typing event was logged. 

To validate the camera 
allocation policy we acquired 
image streams from four 
active cameras centrally 
mounted on each wall. During acquisition, the cameras were continuously steered 
towards the same target. To evaluate ‘utility’ performance, the average size of the 
face skin blob was calculated using the skin blob detector. Table 1 clearly shows the 
advantage of best view selection over a fixed camera-to-target allocation. In 
particular, Fig. 11. shows an interesting situation involving an occlusion successfully 
handled by the policy. Note that without occlusion reasoning camera (A) would be 
selected, as it provides the most face-frontal view. 

(C)

(A) (B)

 

Fig. 11. Active views and tracker output during an occlusion. A predefined camera-to-target 
allocation may deliver (A), while the selection policy successfully allocated (C). 

Table 1. Average face blob size in a fixed camera-to-target allocation vs. optimal selection 

Active camera ID  Cam1 Cam2 Cam3 Cam4 Selection 
Average face size (pixel) 343 227 367 358 605 

Fig. 10. Detected events: greeting (a), and typing (b) 
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6   Conclusions 

In this paper we have shown that a real-time system can be created to automatically 
annotate visually apparent human behaviour. We have also shown how an effective 
means of selecting and maintaining an ideal camera view can be achieved and how an 
ideal camera sequence can be created from the automatic steering and selecting of the 
optimum camera. 

Our next steps towards a richer annotated output will be based upon the extraction 
and fusion of more visual cues (for example, improved posture detection while 
seated) and integrating other modalities. 
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Abstract. We are interested in the situation where we have two or more repre-
sentations of an underlying phenomenon. In particular we are interested in the
scenario where the representation are complementary. This implies that a sin-
gle individual representation is not sufficient to fully discriminate a specific in-
stance of the underlying phenomenon, it also means that each representation is
an ambiguous representation of the other complementary spaces. In this paper
we present a latent variable model capable of consolidating multiple comple-
mentary representations. Our method extends canonical correlation analysis by
introducing additional latent spaces that are specific to the different representa-
tions, thereby explaining the full variance of the observations. These additional
spaces, explaining representation specific variance, separately model the variance
in a representation ambiguous to the other. We develop a spectral algorithm for
fast computation of the embeddings and a probabilistic model (based on Gaussian
processes) for validation and inference. The proposed model has several potential
application areas, we demonstrate its use for multi-modal regression on a bench-
mark human pose estimation data set.

1 Introduction

A common situation in machine learning is the consolidation of two disparate, but re-
lated, data sets. Examples include: consolidation of lip movement with cepstral coef-
ficients for improving the quality of robust speech recognition; consolidation of two
different language renderings of the same document for cross language information re-
trieval; and consolidation of human pose data with image information for marker-less
motion capture.

Formally, we will consider the situation where we are provided with two data sets,
Y = [y1 . . .yN ]T ∈ �N×DY and Z = [z1 . . . zN ]T ∈ �N×DZ , for which there
is some kind of correspondence between each point. For example, each measurement
could have been taken at the same time or under the same experimental conditions. We
are interested in answering questions about the relationship zn and yn. For example:
what is the most likely zn, given yn? This question can be answered by direct modeling
of the conditional probability p (zn|yn). However, this distribution can be very complex
in practice. If we for example used a regression model, it would only be valid if the

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 62–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Latent representation associated with a static pose rotating 360◦ and its corresponding
silhouette image features. The x-axis represents the dimension that is common to both spaces.
The y-axis is image feature specific on the left and pose feature specific on the right. We have
also used the GP-LVM model to associate each location in latent space with a likelihood. White
represents high and black low regions of likelihood. Note the ambiguities in pose associated with
the image feature space (ambiguous poses have similar x and y positions). In the pose space these
ambiguities are resolved in the y axis.

relationship between the observations was unimodal, this is often an invalid assumption.
Multi-modalities that arise are a manifestation of a non-bijective relationship between
yn and zn, one that is difficult to express in a standard regression model. We could
turn to a model for conditional probability estimation that allows for multi-modalities
[13]. However, the nature of the multi-modal relationship is likely to be difficult to
learn when the size of the data set is restricted. In this paper we propose an alternative
approach, one that is based explicitly on assumptions about the relationship between yn

and zn. In particular we will assume that the data is generated by a lower dimensional
latent variable, X. The approach is similar in character to that of canonical correlation
analysis (CCA) with one key difference: the latent space associated with CCA describes
only the characteristics of the data that are common to both the representations. We
will construct a latent space that represents the full data set. We will subdivide the
latent space into three non-overlapping partitions. One partition will be associated only
with the Y data another partition is associated only with the Z data and the remaining
partition is associated with the common or shared information between Y and Z. The
remaining non-shared or private latent subspaces model information not present in the
corresponding observation space. This means when estimating zn from yn the private
space represents the ambiguities of zn when presented with yn.

A simple example of such an ambiguity is given in Figure 1 where the proposed
model has been applied to a toy data set of a rotated character. The x-axis direction in
both plots is shared for both pose and silhouette. The y-axis in the left plot represents
information specific to the silhouette, while in the in the right plot, information specific
to the pose. When looking at the information in the x axis only, the pose is ambigu-
ous. However, in the right plot (from the motion capture) the pose is disambiguated
on the y-axis, i.e. each pose is associated with a single location. The y-axis does not
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help in disambiguation in the left plot (which encodes silhouette information). Clearly,
augmenting the latent space with a direction representing the ‘private information’ will
be vital in disambiguating the pose from the silhouette.

Outline of the paper: In the next section we will present the non consolidating compo-
nent analysis (NCCA) model for data consolidation, we will then show results on both
real and synthetic data in Section 3 followed by conclusions in Section 4.

2 The NCCA Model

Given two sets of corresponding observationsY=[y1, . . . ,yN ]T and Z=[z1, . . . , zN ]T

where yn ∈ �Dy and zn ∈ �Dz we wish to characterize the relationship between the
data sets through a latent variable model. We will assume that the two data sets can be
generated by noise corrupted smooth functions that map from the latent space to the
data-spaces in the following way,

yni = fY
i

(
xs

n,xY
n

)
+ εY

ni, zni = fZ
i

(
xs

n,xZ
n

)
+ εZ

ni, (1)

where {y, z}ni represent dimension i of point n and εY
ni, εZ

ni are sampled from a zero
mean Gaussian distribution. The mappings are occurring from a latent space which is

split into three parts, XY =
{
xY

n

}N

n=1
, XZ =

{
xZ

n

}N

n=1
and Xs = {xs

n}N
n=1. The first

two splits will be associated with variance that is particular to the Y and Z spaces. The
last split is associated with variance that is shared across the spaces.

Distance preserving approaches to dimensionality reduction typically imply that there
is a smooth mapping in the reverse direction. In particular, kernel-CCA [4] implicitly
assumes that there is a smooth mapping from each of the data-spaces to a shared latent
space,

xs
ni = gY

i (yn) = gZ
i (zn) . (2)

However, CCA does not characterize the nature of the other latent subspaces, XY and
XZ . In Section 2.1 we will introduce an algorithm for extracting these spaces which
we refer to as the non-consolidating subspaces. Underpinning the algorithm will be a
further assumption about the non-consolidating subspaces,

xY
ni = hY

i (yn) , xZ
ni = hZ

i (zn) , (3)

where hY
i (·) and hZ

i (·) are smooth functions. A graphical representation of the consol-
idation model is shown in Figure 2. Our approach will be as follows, we will construct
a model by assuming the smooth mappings in (2) and (3) hold. We will then validate
the model quality through assessing how well the resulting embeddings respect (1). We
are inspired in our approach by the suggestion that spectral methods are used to initial-
ize the Gaussian process latent variable model (GP-LVM) in [5] and by the observation
of [3] that the quality of an embedding is nicely indicated by the log likelihood of the
GP-LVM.

To allow for non-linear relationships in the data we will first represent the observa-
tions in kernel induced feature spaces ΨY : Y → FY ; ΨZ : Z → FZ , by introducing
kernels for each feature space, KY and KZ . The first step in the model is to apply kernel
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Algorithm 1. NCCA Consolidation
Input:

Y = [y1, . . . ,yN ], yi ∈ �DY

Z = [z1, . . . , zN ], zi ∈ �DZ

KY ,KZ

Stage 1, Learn latent embedding
Find kernel spaces from Ky and KZ by kernel PCA:
1) Apply CCA to find shared embedded data XS, Eq. (8)
2) Apply NCCA to find non-shared embedded data

XY and XZ, Eq. (9)
Stage 2, Learn mappings, let J be either Y or Z ,

By GP-regression find:
1) Generative maps: fJ : [XS ;XJ ] → J Eq. (10)
2) Shared maps: gJ : J → XS Eq. (11)
3) Non-shared maps: hJ : J → XJ Eq. (12)

See Figure 2
Return:

Pose Estimation: gY and fZ

General Case: All maps learned above.

h
Z

XY

ΦY

Y Z

XX ZS

Y f

XS,Y XS,Z

Y Y fh g Z Z Zg
Φ

Fig. 2. Graphical model of the NCCA Model. The two observations Y and Z are generated from
low-dimensional embeddings XS,Y and XS,Z indicated by rounded rectangles. The embeddings
share a common subspace XS representing the shared variance in each observation space. This
is variance in Y and Z that can be described as a function of Z and Y respectively. An additional
subspace XY and XZ completes the embedding, representing the non-shared variance between
the observations. ΦY and ΦZ collects the parameters associated with each mapping.

canonical correlation analysis (CCA) [4] to find the directions of high correlation be-
tween the two feature spaces. We therefore briefly review the CCA algorithm. The objec-
tive in CCA is to find linear transformations WY and WZ maximizing the correlation
between WY Y and WZZ. Applied in the kernel feature space of each observation,
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{ŴY ,ŴZ} = argmax{WY ,WZ}tr
(
WT

Y KT
Y KZWZ

)
, (4)

s.t. tr
(
WT

Y KT
Y KY WY

)
= I

tr
(
WT

ZKT
ZKZWZ

)
= I,

the optima is found through an eigenvalue problem. In [4] it is suggested to apply CCA
in the dominant principal subspace of each feature space instead of directly in the fea-
ture space, this constrains WY and WZ to explain only the significant variance. We
found this suggestion to be important in practice.

Applying CCA recovers two sets of bases WY and WZ explaining the correlated
or shared variance between the two feature spaces. However, we wish to represent the
full variance of each feature space. To achieve this further sets of bases representing
the remaining variance are required. We derive a new algorithm, non consolidating
component analysis, for finding these additional bases.

2.1 NCCA

Once a set of basis-vectors in each feature space have been found that describe the
shared variance, we need to find directions in each feature space that individually rep-
resents the remaining variance of each data space. We therefore proceed by seeking the
directions of maximum variance in the data that are orthogonal to the directions given
by the canonical correlates. We call the following procedure non-consolidating compo-
nents analysis (NCCA). The NCCA algorithm is applied in the same space as CCA,
but now we seek the first direction v1 of maximum variance which is orthogonal to the
canonical directions that were already extracted,

v1 = argmaxv1
vT

1 Kv1 (5)

subject to: vT
1 v1 = 1 and vT

1 W = 0, (here we have temporarily dropped the partition
subscript), W are the canonical directions and K is the covariance matrix in the domi-
nant principal subspace of the feature space. The optimal v1 is found via an eigenvalue
problem, (

C− WWTK
)
v1 = λ1v1. (6)

For successive directions further eigenvalue problems of the form(
K−

(
WWT +

k−1∑
i=1

vivT
i

)
K

)
vk = λkvk (7)

need to be solved. Note that we only need the largest eigenvalue for each of these
eigenvalue problems which can lead to significant computational savings.

After applying CCA and NCCA we have recovered the following embeddings of the
data

XS = 1
2 (WY FY + WZFZ) (8)

XY = VY FY ; XZ = VZFZ , (9)

where FY and FZ represent the kernel PCA representation of each observation space.
The latent variables XY , XZ represent the non shared variance of each feature space
and XS represents the shared variance.
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Our methodology results in a purely spectral algorithm: the optimization problems
are convex and they lead to unique solutions. However, these spectral methods are per-
haps less useful when it comes to inquisition of the resulting model. The pre-image
problem means that handling missing data can be rather involved [9]. Probabilistic la-
tent variable models lack the elegant convex solutions provided by spectral methods,
but they facilitate model inquisition. Harmeling [3] has performed a series of embed-
ding experiments for which the ground truth is available. By comparing the embeddings
from several different spectral algorithms with the ground truth, a good correpondence
between the likelihood of the GP-LVM and the quality of the embedding is shown. In-
tuitively this is because: if the assumptions in (2) and (3) hold and the manifold has
been correctly ‘unraveled’ (1) should also hold. If (1) holds then the likelihood of the
GP-LVM will be high and inferences undertaken with the GP-LVM will be accurate.
This allows us to proceed by combining our algorithm with the GP-LVM for model
selection and inference.

The NCCA algorithm results in implicit mappings from the observation spaces to the
embeddings or, if non function based kernels are used — such as those resulting from
the MVU algorithm [14], a mapping can be learned explicitly. However, this leaves
us with the pre-image problem [10]. For a given latent location, what is the correct
observation? The next stage is, therefore, to build Gaussian process mappings from the
latent to the data space. This will result in a combination of GP-LVM models that can be
used for any inference tasks in the model. This means that as a post processing step, we
learn mappings to regenerate the observations spaces Y and Z from the embeddings.
We define the Y and Z specific latent space as XS,Y = [XS ;XY ], XS,Z = [XS ;XZ ]
respectively. The mappings,

f{Y,Z} :yi = fY (xS,Y
i ) + εY

f ; zi = fZ(xS,Z
i ) + εZ

f , (10)

g{Y,Z} :xS
i = gY (yi) + εY

g = gZ(zi) + εZ
g , (11)

h{Y,Z} :xY
i = hY (yi) + εY

h ;xZ
i = hZ(zi) + εZ

h , (12)

where ε
{Y,Z}
{f,g,h} are samples from zero mean Gaussian distributions, are learned using

GP-regression [8].
Note that we have, in effect, created a set of back-constrained GP-LVMs from our

data [6]. We could have used the GP-LVM algorithm directly for learning this model,
in practice though, the spectral approach we have described is much quicker and has
fewer problems with local minima.

2.2 Inference

The proposed model represents two data sets using a low dimensional latent variable.
Once the latent representations have been learned we are interested in inferring the
location z∗, corresponding to a previously unseen input y∗. The input and the sought
output locations latent representation coincide on the shared latent subspace XS , which
can be determined from the input through the mapping gY . Therefore, to determine the
full location of the corresponding output, it remains to determine the location over the
private space associated with the output. However, the private subspace is orthogonal to
the input specific latent subspace. This implies y∗ can provide no further information
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to disambiguate over this space, i.e. each location over the private space corresponds
to outputs that are ambiguous to the input location. We therefore proceed by finding
the most probable z∗’s generated by fZ for different locations over XZ . From our
model’s perspective, this is equivalent to minimizing the predictive variance of fZ [8]
with respect to xZ

∗ under the constraint that xS
∗ is given,

x̂Z
∗ = argmaxxZ∗

[
k(xS,Z

∗ ,xS,Z
∗ ) − k(xS,Z

∗ ,XS,Z)T(K + β−1I)k(xS,Z
∗ ,XS,Z)

]
.
(13)

The optimal x̂Z
∗ is found by optimizing Eq. (13) using gradient based methods. We are

looking to find all the locations z∗ that are consistent with a specific y∗. The separa-
tion of Z into shared and non-shared means that the ambiguities are very close in the
shared subspace. Therefore, we can explore the different modes by looking for nearest
neighbors in the shared subspace and initializing the GP-LVM optimizations from those
neighbors.

3 Human Pose Estimation

We now consider the application of the model to human pose estimation. We will first
briefly review relevant previous work in this area, much of which has provided the in-
spiration of our approach. Human pose estimation is the task of estimating the full pose
configuration of a human from an image. Due to the high dimensionality of the image
representation it is common practice, as a preprocessing stage, to represent each image
by a lower dimensional image feature vector. In the simplest case, where there is no
ambiguity between the image features and the pose, the relationship can be modeled
with regression as was demonstrated by [1]. However, regression models are not suffi-
cient to accurately describe the multi-modalities that we expect to arise as a result of
ambiguities associated with common image features. An alternative approach to deal-
ing with the multi-modalities is to use a conditional model over the image feature space
given the poses [13]. However, due to the high dimensionality and relative data spar-
sity care must be taken in choosing the class of conditional models. One solution is to
incorporate a low dimensional manifold within the conditional density model, thereby
avoiding the curse of dimensionality. This approach is followed by [2,7] who exploit
the shared GP-LVM [11] to jointly learn a low dimensional representation of both the
image features and the pose space. An advantage of basing the model on the GP-LVM
[5] is that it provides a principled probabilistic framework for the resulting inference of
pose, easily allowing, for example, the incorporation of dynamical models [2].

A key problem with the application of the shared GP-LVM in this context is that a
single latent space is used to explain all the variance in the data. Since we know that
only a portion of the variance is shared, with the remainder being specific to each data
partition, it seems to make much more sense to encode this explicitly. The proposed
NCCA model does this by decomposing the latent space into sub-spaces which encode
the shared variance and subspaces which encode the variance that is private to each
data set. These constraints on the latent spaces lead to much cleaner representation of
the ambiguities in practice (as we shall see in Section 3.1). When combining the image
features with the motion capture the shared latent space represents the variance in the
pose space that can be discriminated from the image feature location. The ambiguities,
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Fig. 3. Pose inference from silhouette using two different silhouettes from the training data. From
the silhouette in the left image it is not possible to determine the positioning of the legs, this results
in an elongated region of high probability in the pose private subspace that describs a full stride.
The right image shows a silhouette from which it is not possible to differentiate between the right
and the left leg. This results in two clear modes over the non-shared dimensions representing the
two possible leg labellings in the silhouette.

Fig. 4. The pose specific latent representation associated with the HumanEva data. Applying the
NCCA algorithm results in a one dimensional shared subspace and a two dimensional pose pri-
vate space. The larger circle in the embedding is associated with the heading direction while the
smaller circles encodes the configuration of arms and legs.

if they exist, therefore necessarily lie in the portion of the latent space that is specific to
the motion capture data. As we shall see this makes them much easier to visualize and
interpret.

Further, it is likely that a significant amount of the variance in a descriptor does not
help in disambiguating the pose. In the shared GP-LVM this information is still encoded
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Fig. 5. Pose inference on a sequence of images from the HumanEva data set. Top row: original test
set image. Second row: visualisation of the modes in the non-shared portion of the pose specific
latent space. Note how the modes evolve as the subject moves. When the subject is heading in a
direction perpendicular to the view-plane, it is not possible to disambiguate the heading direction
image (1, 2 and 6) this is indicated by two elongated modes. In image (3 − 5) it is not possible
to disambiguate the configuration of the arms and legs this gives rise to a set of discrete modes
over the latent space each associated with a different configuration. Bottom row: the pose coming
from the mode closest to the ground truth is shown. The different types of mode are explored
further in Figure 6.

in the model: the shared GP-LVM attempts to model all the variance in the data. The
NCCA model encodes this information separately, which means it does not influence
the inference procedure. This is a key advantage of our model compared to other con-
ditional models, where inference is polluted by estimating this task irrelevant variance.

Once again we direct the reader to Figure 1 to see this effect. The y-axis in the left
plot is encoding the spurious information from the image features. It does not help with
encoding the true pose. It also is prevented from corrupting the information that arises
from the motion capture data (right plot).

3.1 Experiments

We considered a walking sequence from the HumanEva database [12]. There are four
cycles in a circular walk, we use two for training and two for testing for the same
subject. In the original data the subject is walking in a counter-clockwise direction,
to introduce further ambiguities into the data we transform each image and pose to
also include the clockwise motion. Each image is represented using a 100 dimensional
integral HOG descriptor [15] with 4 orientation bins and the pose space by the 3D
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NCCA

Shared GP-LVM

Fig. 6. The top row shows two images from the training data. The 2nd and 3rd row shows results
from infering the pose using the NCCA consolidation, the first column shows the likelihood sam-
pled over the pose specific latent space constrained by the image features, the remaining columns
shows the modes associated with the locations of the white dots over the pose specific latent
space. NCCA: In the 2nd row the position of the leg and the heading angle cannot be determined
in a robust way from the image features. This is reflected by two elongated modes over the latent
space representing the two possible headings. The poses along each mode represents different
leg configurations. The top row of the 2nd column shows the poses generated by sampling along
the right mode and the bottom row along the left mode. In the 3rd row the position of the leg
and the heading angle is still ambiguous to the feature, however here the ambiguity is between a
discrete set of poses indicated by four clear modes in the likelihood over the pose specific latent
space. SGP-LVM: The 4th and 5th row show the results of doing inference using the SGP-LVM
model. Even though the most likely modes found are in good correspondece to the ambiguities
in the images the latent space is cluttered by local minima that the optimization can get stuck in.
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locations of 19 major body joints. There are two types of motion in the data, the global
motion of the subject moving around in 3D space and the local body relative motion,
i.e. each stride. We assume that each local movement in the training data is possible at
all global locations. To decorrelate the two motions we represent the pose space as the
sum of a MVU kernel [14] applied to the full pose space and a linear kernel applied on
the local motion. The NCCA algorithm with this kernel over the pose space and a MVU
kernel over the image features results in a one dimensional shared space explaining 9%
and 18% of the variance in the image feature and pose space respectively. To retain
95% of the variance in each observation two dimensions are needed to represent the
non-shared variance for both the pose and the image feature space. The pose specific
latent space takes the shape of a torus, the larger circle is associated with the heading
direction and the smaller circles associated with the stride at that position Figure 4.
The total computation time for learning the embedding and the required mappings was
about 10 minutes on a Intel Core Duo with 1GB of RAM. In Figure 6 the 2nd and
3rd row show inference of two different image features from the test data is shown.
The inference procedure using 20 nearest neighbor initializations per image took a few
seconds to compute.

Shared GP-LVM: The inference procedure in the NCCA model consists of a discrim-
inative mapping followed by the optimization over a sub-set of the pose specific latent
space. In comparison to the shared GP-LVM [2,7] the optimization is done over the
full latent representation of both image feature and pose. This means that the objec-
tive is influenced by how well the latent locations represents variance in the image
features that are irrelevant for discriminating the pose. In contrast, the optimization in
the NCCA model is done over latent dimensions representing only pose relevant vari-
ance. We applied the shared GP-LVM model suggested in [7] to the above data set. To
compare models with similar inference complexity we learn a two dimensional shared
latent representation of image feature and pose. The optimization on the latent space is
initialized by the nearest neighbors in the training data. Note that this is a search in the
100 dimensional image feature space compared to the algorithm we present were the
nearest neighbor search takes place in a one dimensional space. In Figure 6 the bottom
two rows shows the results of applying the Shared GP-LVM to inference the pose of the
same images as for the NCCA model.

4 Conclusion

We have presented a practical approach to consolidating two data sets with known cor-
respondences via a latent variable model. We constructed a generative latent variable
model for inference and model validation and a spectral algorithm for fast learning of
the embeddings, both these interpretations of our model built upon canonical correla-
tion analysis. The resulting model was successful in visualizing the ambiguities on a
benchmark human motion data set. Moreover, not only is the presented model fast to
train, but also it is efficient in the test phase. Inference is realized by a fast discrimina-
tive model that constrains the related generative model. This results in a much simpler
estimation compared to previous generative approaches.
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Abstract. When applied to interactive seminars, the detection of acoustic 
events from only audio information shows a large amount of errors, which are 
mostly due to the temporal overlaps of sounds. Video signals may be a useful 
additional source of information to cope with that problem for particular events. 
In this work, we aim at improving the detection of steps by using two audio-
based Acoustic Event Detection (AED) systems, with SVM and HMM, and a 
video-based AED system, which employs the output of a 3D video tracking 
algorithm. The fuzzy integral is used to fuse the outputs of the three detection 
systems. Experimental results using the CLEAR 2007 evaluation data show that 
video information can be successfully used to improve the results of audio-
based AED. 

Keywords: Acoustic Event Detection, Fuzzy Integral, Multimodality, Support 
Vector Machines, Hidden Markov Models, Video 3D Tracking. 

1   Introduction 

Recently, several papers have reported works on Acoustic Events Detection (AED) for 
different meeting-room environments and databases e.g. [1] [2] [3]. The CLEAR’07 
(Classification of Events, Activities and Relationships) international evaluation database 
consists of several interactive seminars which, among other things, contain “meeting”, 
“coffee break”, “question/answers” activities. The evaluation campaign showed that in 
that seminar conditions AED is a challenging problem. In fact, 5 out of 6 submitted 
systems showed accuracy below 25%, and the best system got 33.6% accuracy (see [2] 
[3] for results, databases and metrics). The single main factor that accounts for those 
low detection scores is the high degree of overlap between sounds, especially between 
the targeted acoustic events and speech.  

The overlap problem may be faced by developing efficient algorithms that work at 
the signal level, the model level or the decision level. Another approach is to use an 
additional modality that is less sensitive to the overlap phenomena present in the 
audio signal. In this work we aim at including video information in our existing 
audio-based detection systems using a fusion approach. Actually, the above 
mentioned seminar databases include both video and audio information from several 
cameras and microphones hanged on the walls of the rooms.  
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The information about movements and positions of people in a meeting room may 
be correlated with acoustic events that take place in it. For instance, the sources of 
events such as “door slam” or “door knock” are associated to given positions in the 
room; other events such as “steps” and “chair moving” are accompanied with changes 
of position of participants in the meeting room. Motivated by the fact that the “steps” 
sound class accounted for almost 35% of all acoustic events in the CLEAR’07 
evaluation database, in this work we use video 3D tracking information in order to 
improve the detection of that particular class. 

In our work, late fusion is used by combining the decisions from several 
information sources: two audio-based AED systems, with SVM and HMM, and a 
VIDEO-based AED system. Fusion is carried out with the Fuzzy Integral (FI) [4] [5], 
a fusion technique which is able to take into account the interdependences among 
information sources. Unlike non-trainable fusion operators (mean, product [4]) the 
statistical FI approach can be more beneficial in our challenging task. From the 
results, FI fusion shows better accuracy than either the single classifiers or the 
classical Weighted Arithmetical Mean (WAM) fusion operator [4].  

The rest of this paper is organized as follows: Section 2 describes video and audio-
based systems of AED. The fuzzy integral is described in Section 3. Section 4 presents 
experimental results and discussions, and Section 5 concludes the work. 

2   Acoustic Event Detection Systems 

In this work, detection of acoustic events is carried out with one VIDEO-based and 
two audio-based systems. The use of the three AED systems is motivated by the fact 
that each system performs detection in a different manner. The video-based system 
uses information about position of people in the room. The HMM-based AED system 
segments the acoustic signal in events by using a frame-level representation of the 
signal and computing the state sequence with highest likelihood. The SVM-based 
system does it by classifying segments resulting from consecutive sliding windows. 
The difference in the nature of the considered detection systems makes the fusion 
promising for obtaining a superior performance. 

2.1   Video-Based Detection System for the Class “Steps” 

2.1.1   Person Tracking and Multi-object Tracking 
Person tracking is carried out by using multiple synchronized and calibrated cameras 
as described in [6]. Redundancy among camera views allows generating a 3D discrete 
reconstruction of the space being these data the input of the tracking algorithm. A 
particle filtering (PF) [7] approach is followed to estimate the location of each of the 
people inside the room at a given time t. Two main factors are to be taken into 
account when implementing a particle filter: the likelihood function and the 
propagation strategy.  

Likelihood function p(zt|xt) can be defined as the likelihood of a particle belonging 
to the volume that corresponds to a person. For a given particle j occupying a voxel xt, 
its likelihood is formulated as: 
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where C(·) stands for the neighborhood over a connectivity q domain on the 3D 
orthogonal grid and |C(·)| represents its cardinality. Typically, connectivity in 3D 
discrete grids can be 6, 14 and 26 and in our research q=26 provided accurate results. 
Function d(·) measures the distance between a foreground voxel p in the neighborhood 
and the particle. 

Challenges in 3D multi-person tracking from volumetric scene reconstruction are 
basically twofold. First, finding an interaction model in order to avoid mismatches 
and target merging. Several approaches have been proposed [8] but the joint PF 
presented in [9] is the optimal solution to multi-target tracking using PFs. However, 
its computational load increases dramatically with the number of targets to track since 
every particle estimates the location of all targets in the scene simultaneously. The 
proposed solution is to use a split PF per person, which requires less computational 
load at the cost of not being able to solve some complex cross-overs. However, this 
situation is alleviated by the fact that cross-overs are restricted to the horizontal plane 
in our scenario (see Fig.1). 

Let us assume that there are M independent PF trackers, being M the number of 
humans in the room. Nevertheless, they are not fully independent since each PF can 
consider voxels from other tracked targets in either the likelihood evaluation or the 
3D re-sampling step resulting in target merging or identity mismatches. In order to 
achieve the most independent set of trackers, we consider a blocking method to model 
interactions. Many blocking proposals can be found in 2D tracking related works [9] 
and we extend it to our 3D case. 

The combination of the estimated 3D location together with geometric descriptors 
allows discarding spurious objects such as furniture and a simple classification of the 
person's pose as standing or sitting. The performance of this algorithm over a large 
annotated database [6] showed the effectiveness of this approach. 

 

Fig. 1. Particles from the tracker A (yellow ellipsoid) falling into the exclusion zone of tracker 
B (green ellipsoid) will be penalized 

2.1.2   Feature Extraction and “Steps” Detection 
The output of the 3D tracking algorithm is the set of coordinates of all the people in 
the room, which are given every 40ms. From those coordinates, we have to generate 
features that carry information correlated with “steps”. We assume that information  
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(a) (b)  

Fig. 2. In (a), values of the velocity during one development seminar (bottom) and reference 
“steps” labels (top). In (b), the histograms of log-velocities for “non-steps” (left hump) and 
“steps” (right hump). 

about movements of people is relevant for “steps” detection. The movements of 
people in the meeting room can be characterized by a velocity measure. In a 2D plane, 
the velocity can be calculated in the following way:  
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where dx/dt and dy/dt are the values of velocity along x and y axes, respectively. 
Those values are calculated using a smoothed derivative non-casual filter h applied to 
the vector of positions of each person in the room. We tried several shapes of the 
impulse response of the derivative filter; best results were obtained using a linear non-
casual filter with the impulse response h(n) = [-m … -2 -1 0 1 2 … m] (zero 
corresponds to the current value and L=2*m+1 is the length of the filter).  

Usually more than one person is present in the room, and each person has its own 
movement and velocity. The maximum velocity among the participants in the seminar 
is used as a current feature value for “steps”/ “non-steps” detection. 

Fig. 2 (a) plots the maximum value of velocity among participants for a 6-min 
seminar along with the corresponding ground truth labels. From it we can observe that 
there is certain degree of correspondence between peaks of velocity and true “steps”.  

The normalized histograms of the logarithm of velocity for “steps” and “non-steps” 
obtained from development seminars are depicted in Fig. 2 (b), from which can be 
seen that “steps” are more likely to appear with higher values of velocity. 

The jerky nature of the “steps” hump results from a more than 10 times scarcer 
representation of “steps” with respect to “non-steps” in the development database. 
These two curves are approximated by two Gaussians via Expectation-Maximization   
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Fig. 3. Detection of “steps” on the development database as a function of the length of the 
derivative filter (in seconds) 

algorithm (EM). During detection on testing data the final decision for “steps”/ “non-
steps” classes is made using the Bayesian rule: 

)()|()|( jjj wPwxPxwP = , j={1,2}. (3) 

where P(w1) and P(w2) are prior probabilities for the class “steps” and the meta-class 
“non-steps” respectively, which are computed using the prior distribution of these two 
classes in development data and P(x|wj) are likelihoods given by the Gaussian models. 

To have a better detection of “steps” the length L of the derivative filter h(n) and 
several types of windows applied on h(n) were investigated. According to the results 
shown in Fig. 3, the best detection of “steps” on development data is achieved with a 
2-sec-long derivative filter and a Hamming window.  

2.2   SVM-Based AED System 

The SVM-based AED system used in the present work is the one that was also used for 
the AED evaluations in CLEAR 2007 [3] with slight modifications. The sound signal 
from a single MarkIII array microphone is down-sampled to 16 kHz, and framed 
(frame length/shift is 30/10ms, a Hamming window is used). For each frame, a set of 
spectral parameters has been extracted. It consists of the concatenation of two types of 
parameters: 1) 16 Frequency-Filtered (FF) log filter-bank energies, along with the first 
and the second time derivatives; and 2) a set of the following parameters: zero-crossing 
rate, short time energy, 4 sub-band energies, spectral flux, calculated for each of the 
defined sub-bands, spectral centroid, and spectral bandwidth. In total, a vector of 60 
components is built to represent each frame. The mean and the standard deviation 
parameters have been computed over all frames in a 0.5sec window with a 100ms shift, 
thus forming one vector of 120 elements.  

SVM classifiers have been trained using 1vs1 scheme on the isolated AEs, from 
two databases of isolated acoustic events, along with segments from the development 
data seminars, that include both isolated AEs and AEs overlapped with speech. The 
MAX WINS (pair-wise majority voting) [10] scheme was used to extend the SVM to 
the task of classifying several classes. After the voting is done, the class with the 
highest number of winning two-class decisions (votes) is chosen.  
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2.3   HMM-Based AED System 

We formulate the goal of acoustic event detection in a way similar to speech 
recognition: to find the event sequence that maximizes the posterior probability of the 
event sequence W = (w1,w2, ...,wM), given the observations O =(o1, o2, ..., oT ): 

Wmax= argmax P(W|O) = argmaxP(O|W)P(W). (4) 

We assume that P(W) is the same for all event sequences. 
For building and manipulating hidden Markov models HTK toolkit is used [11]. 

Firstly, the input signal from a single MarkIII-array microphone is down-sampled to 
16 kHz, and 13 FF coefficients with their first time derivatives are extracted, using a 
Hamming window of size 20-ms with shift 10-ms. There is one HMM for each 
acoustic event class, with five emitting states and fully connected state transitions. We 
also used a similar HMM for silence. The observation distributions of the states are 
Gaussian mixtures with continuous densities, and consist of 9 components with 
diagonal covariance matrices. The “speech” class is modelled with 15 components as 
its observation distribution is more complex. Actually, the chosen HMM topology 
showed the best results during a cross-validation procedure on the development data. 
Each HMM is trained on all signal segments belonging to the corresponding event 
class in the development seminar data, using the standard Baum-Welch training 
algorithm. During testing the AED system finds the best path through the recognition 
network and each segment in the path represents a detected AE. 

3   Fusion of Information Sources 

3.1   The Fuzzy Integral and Fuzzy Measure 

We are searching for a suitable fusion operator to combine a finite set of information 
sources },...,1{ zZ = . Let },...,,{ 21 zDDDD =  be a set of trained classification systems 

and },...,,{ 21 Nccc=Ω  be a set of class labels. Each classification system takes as 

input a data point nx ℜ∈  and assigns it to a class label from Ω .  
Alternatively, each classifier output can be formed as an N-dimensional vector that 

represents the degree of support of a classification system to each of N classes. It is 
convenient to organize the output of all classification systems in a decision profile:  
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where a row is classifier output and a column is a support of all classifiers for a class. 
We suppose these classifier outputs are commensurable, i.e. defined on the same 

measurement scale (most often they are posterior probability-like).  
Let’s denote hi, i=1,..,z, the output scores of z classification systems for the class cn 

(the supports for class cn, i.e. a column from decision profile) and before defining how 
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FI combines information sources, let’s look to the conventional WAM fusion 
operator. A final support measure for the class cn using WAM can be defined as: 

∑
∈

=
Zi

iWAM hiM )(μ  

where ∑
∈

=
Zi

i 1)(μ  (additive), Ziallfori ∈≥ 0)(μ  
(6)

The WAM operator combines the score of z competent information sources 
through the weights of importance expressed by ( )iμ . The main disadvantage of the 

WAM operator is that it implies preferential independence of the information sources. 
Let’s denote with }),({),( jiji μμ =  the weight of importance corresponding to the 

couple of information sources i and j from Z. If μ  is not additive, i.e. 

( ) ( ) ( )[ ]jiji μμμ +≠,  for a given couple Zji ⊆},{ , we must take into account some 

interaction among the information sources. Therefore, we can build an aggregation 
operator starting from the WAM, adding the term of “second order” that involves the 
corrective coefficients ( ) ( ) ( )[ ]jiji μμμ +−, , then the term of “third order”, etc. 

Finally, we arrive to the definition of the FI: assuming the sequence hi, i=1,..,z, is 
ordered in such a way that zhh ≤≤ ...1 , the Choquet fuzzy integral can be computed 

as 

( ) ( )[ ]∑
=

+−=
z

i
iFI hzizihM

1

,...,1,...,),( μμμ  (7) 

where 0ø)()1( ==+ μμ z . )(Sμ can be viewed as a weight related to a subset S of 

the set Z of information sources. It is called fuzzy measure for ZTS ⊆, it has to meet 

the following conditions:  

1)( 0,ø)( == Zμμ ,   Boundary 

)( )( TSTS μμ ≤⇒⊆ ,  Monotonicity 

For instance, as an illustrative example let’s consider the case of 2 information 
sources with unordered system outputs h1=0.4 and h2=0.3, and corresponding fuzzy 
measures μ(1)=0.6 and μ(2)=0.8. Note that μ(0)=0 and μ(1,2)=1. In that case, the 
Choquet fuzzy integral is computed as MFI(μ,h)= (μ(1,2)- μ(1))h2+ μ(1)h1=0.36.  

3.2   Synchronization and Normalization of System Outputs 

In order to fuse 3 information sources (SVM-based, HMM-based, and VIDEO-based 
systems), their outputs must be synchronized in time. In our case, the SVM system 
provides voting scores every 100ms, the VIDEO system every 40ms, and the HMM 
system gives segments of variable length which represent the best path through the 
recognition network. The outputs of the 3 systems were reduced to a common time 
step of 100ms. For that purpose the output of the VIDEO-based system was averaged 
on each interval of 100ms, while for the HMM system each segment was broken into 
100ms-long pieces.  
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On the other hand, to make the outputs of information sources commensurable we 
have to normalize them to be in the range [0 1] and their sum equal to 1.  

As it was said in Section 2.2, when the SVM classification system is used alone, 
after voting, the class with the highest number of winning two-class decisions (votes) 
is chosen. In case of a subsequent fusion with other classification systems numbers of 
votes obtained by non-winning classes were used to get a vector of scores for the 
classes. For the HMM system, each hypothesis of an AE given by the optimal Viterbi 
segmentation of the seminar is then decoded by the trained HMM models of winning 
and each non-winning AE class in order to obtain the corresponding log-likelihood 
values which form vector of scores.  In case of VIDEO-based AED system we obtain 
scores for the two classes “steps” and “non-steps” as the distance between the values 
of log-velocity and the decision boundary. To make the scores of VIDEO-based and 
HMM-based systems positive min-max normalization [12] is used. 

The soft-max function is then applied to the vector of scores of each detection 
system. This function is defined as: 

∑=
i

iinormalizedi qkqkq )*exp(/)*exp(  
(8) 

where the coefficient k controls the distance between the components of the vector 
[q1, q2, …,qN].For instance, in extreme case when k=0, the elements of the vector after 
soft-max normalization would have the same value 1/N, and when k→∞ the elements 
tend to become binary. The normalization coefficients are different for each AED 
system, and they are obtained using the development data. 

4   Experiments and Results 

4.1   Database and Metric 

In our experiments, the CLEAR’07 evaluation database is used [3]. It consists of 25 
interactive seminars, approximately 30min-long that have been recorded by AIT 
(Athens Information Technology), ITC (Instituto Trentino di Cultura), IBM, UKA 
(Universität Karlsruhe), and UPC (Universitat Politècnica de Catalunya) in their 
smart-rooms. In our experiments for development and testing we used only recordings 
of 3 sites (AIT, ITC, and UPC) because the IBM data is not included in the testing 
database, and the performance of the video tracking algorithm on the UKA data is 
very low, due to errors presented in the video recordings (heavy radial distortions in 
zenithal camera). In other respects, the training/testing division is preserved from 
CLEAR’07 evaluation scenario. 

The AED evaluation uses 12 semantic classes (classes of interest), i.e. types of AEs 
that are: “door knock”, “door open/slam”, “steps”, “chair moving”, “spoon/cup 
jingle”, “paper work”, “key jingle”, “keyboard typing”, “phone ring”, “applause”, 
“cough”, and “laugh”. Apart from the 12 evaluated classes, there are 3 other events 
present in the seminars (“speech”, “silence”, “unknown”) which are not evaluated. 

The Accuracy metric [3] is used in this work and it is defined as the harmonic 
mean between precision and recall computed for the classes of interest, where 
precision is number of correct hypothesis AEs divided by total number of hypothesis 
AEs, and recall as number of correctly detected reference AEs divided by total 
number of reference AEs. 
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4.2   One-Stage and Two-Stage Fuzzy Integral Approaches 

In our case, not all information sources give scores for all classes. Unlike SVM and 
HMM-based systems, which provide information about 15 classes, the VIDEO-based 
system scores are given only for the class “steps” and the meta-class “non-steps”. 
Fusion of information sources using the fuzzy integral can be done either by 
transforming (extending) the score for “non-steps” from the VIDEO-based system to 
the remaining 14 classes which do not include “steps” or, vice-versa, transforming 
(restricting) the scores of 14 classes provided by the SVM and HMM-based systems 
to one score for the meta-class “non-steps”. In the former case, the fusion is done at 
one stage with all the classes. In the latter, a two-stage approach is implemented, 
where on the first stage the 3 detection systems are used to do “steps”/ “non-steps” 
classification and on the second stage the subsequent classification of the “non-steps” 
output of the first stage is done with both SVM and HMM-based systems. The one-
stage and two-stage approaches are schematically shown in Fig. 4. 

For one-stage fusion (Fig. 4 (a)) the score V of “non-steps” of the VIDEO-based 
system is equally distributed among the remaining 14 classes assigning to each of 
them score V before applying soft-max normalization. At the first stage of the two-
stage approach, all the classes not labeled as “steps” form the “non-steps” meta-class. 
The final score of “non-steps” is chosen as maximum value of scores of all the classes 
that formed that meta-class. 

For the weights in WAM operator we use uniform class noise model with the  
detection system [4]. The individual FMs for the fuzzy integral fusion are trained on 
development data in our work using the gradient descent training algorithm [13]. The 
5-fold cross validation on development data was used to stop the training process to 
avoid overtraining. The tricky point was that during training the algorithm minimizes 
the total error on development data. As the number of data per each class is non-
uniform distributed, during the training process the number of detection mistakes for 
the most representative classes (“speech”, “silence”) is decreased at the expense of 
increasing errors on the classes with lower number of representatives. The final metric 
scores, however, only 12 classes which are the classes with much smaller number of  
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Fig. 4. One-stage (a) and two-stage (b) fusion with the fuzzy integral 
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representatives than e.g. “speech”. This way, the FI with the trained FM measure 
tends to detect correctly the classes that are not scored by the metric. To cope with 
this problem, we firstly fixed the FM of the classes of no interest (“speech”, 
“unknown”, and “silence”) to be in the equilibrium state [13] and, secondly, calculate 
the cross-validation accuracy only for the classes of interest. 

4.3   Results and Discussion 

The results of first-stage fusion for “steps”/“non-steps” detection are presented in 
Fig. 5. It can be seen that fusion of SVM and HMM-based systems leads to a small 
improvement, while in combination with video information the improvement is 
noticeable. It is worth to mention that 48.1 % of accuracy for “steps” detection would 
indicate a little worse decision than random choice if the metric scored both “non-
steps” meta-class and “steps” class. However, in our case, only the “steps” class is 
scored and thus 48.1% indicates that not only around 48.1% of “steps” are detected 
(recall) but also that 48.1% of all produced decisions are correct (precision). On the 
first stage the FI fusion gives superior results in comparison with WAM fusion. This 
indicates that a certain interaction between information sources for “steps” detection 
exists that can not be captured by WAM fusion operator.  

The final results of detection of all 15 classes of AEs are presented in Fig. 6. It can 
be seen that total system accuracy benefits from better recognition of “steps” class. 
Again in this experiment the FI fusion shows better performance then WAM, 
resulting in a final accuracy of 40.5%. 

One-stage fusion explained in the previous subsection showed lower scores - only 
37.9% for WAM and 38.4% with FI. This fact may indicate that in our particular case 
spreading no-information for classes with missing scores can be harmful and, 
conversely, to compress the scores of many classes to binary problems can be more 
beneficial. However, the way of extending/compressing of the scores should be 
studied in more depth to further support this statement. 
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Fig. 5. Accuracy of “steps” detection on the first stage using the fuzzy integral 
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Fig. 6. Total system accuracy based on the first and the second stage fusion 

5   Conclusions 

In this work, by using data from interactive seminars, we have shown that video 
signals can be a useful additional source of information to cope with the problem of 
acoustic event detection. Using an algorithm for video 3D tracking, video-based 
features that represent the movement have been extracted, and a probabilistic 
classifier for "steps"/"non-steps" detection has been developed. The fuzzy integral 
was used to fuse the outputs of both that video-based detector and two audio-based 
AED systems which use either SVM or HMM classifiers. Results show that video 
information helps to detect acoustic “steps” events, and future work will be devoted to 
extend the multimodal AED system to more classes. 
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Audio-Visual Clustering for 3D Speaker Localization
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Abstract. We address the issue of localizing individuals in a scene that contains
several people engaged in a multiple-speaker conversation. We use a human-like
configuration of sensors (binaural and binocular) to gather both auditory and vi-
sual observations. We show that the localization problem can be recast as the task
of clustering the audio-visual observations into coherent groups. We propose a
probabilistic generative model that captures the relations between audio and vi-
sual observations. This model maps the data to a representation of the common
3D scene-space, via a pair of Gaussian mixture models. Inference is performed
by a version of the Expectation Maximization algorithm, which provides cooper-
ative estimates of both the activity (speaking or not) and the 3D position of each
speaker.

1 Introduction

In most systems that handle multi-modal data, audio and visual inputs are first processed
by modality-specific subsystems, whose outputs are subsequently combined. The per-
formance of such procedures in realistic situations is limited. Confusion may arise from
factors such as background acoustic and/or visual noise, acoustic reverberation, and vi-
sual occlusions. The different attempts that have been made to increase robustness are
based on the observation that improved localization and recognition can be achieved by
integrating acoustic and visual information. The reason is that each modality may com-
pensate for weaknesses of the other one, especially in noisy conditions. This raises the
question of how to efficiently combine the two modalities in different natural conditions
and according to the task at hand.

The first question to be addressed is where the fusion of the data should take place.
In contrast to the fusion of previous independent processing of each modality [1], the
integration could occur at the feature level. One possibility is that audio and video fea-
tures are concatenated into a larger feature vector which is then used to perform the
task of interest [2]. However, owing to the very different physical natures of audio and
visual stimuli, direct integration is not straightforward. There is no obvious way to asso-
ciate dense visual maps with sparse sound sources. The input features in our approach
are first transformed into a common representation and the processing is then based
on the combination of features in this representation. Within this strategy, we identify
two major directions depending on the type of synchrony being used. The first one fo-
cuses on spatial synchrony and implies combining those signals that were observed at

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 86–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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a given time, or through a short period of time, and correspond to the same source
(e.g. speaker). Generative probabilistic models in [2] and [3] for single speaker track-
ing achieve this by introducing dependencies of both auditory and visual observations
on locations in the image plane. Although authors in [2] suggested an enhancement of
the model that would tackle the multi-speaker case, it has not been implemented yet.
Explicit dependency on the source location that is used in generative models can be gen-
eralized using particle filters. Such approaches were used for the task of single speaker
tracking [4, 5, 6, 7, 8] and multiple speaker tracking [7, 9, 10]. In the latter case the
parameter space grows exponentially as the number of speakers increases, so efficient
sampling procedures were suggested [10], [7] to keep the problem tractable.

The second direction focuses on temporal synchrony. It efficiently generalizes the
previous approach by making no a priori assumption on audio-visual object location.
Signals from different modalities are grouped if their evolution is correlated through
time. The work in [11] shows how principles of information theory can be used to select
those features from different modalities that correspond to the same object. Although
the setup consists of a single camera and a single microphone and no special signal pro-
cessing is used, the model is capable of selecting the speaker among several persons that
were visible. Another example of this strategy is [12] where audio-visual association is
performed based on audio and video onsets (times at which sound/motion begins). This
model has been successfully tested even in the case of multiple sound sources. These
approaches are non-parametric and highly dependent on the choice of appropriate fea-
tures. Moreover they usually require learning or ad hoc tuning of quantities such as
window sizes, temporal resolution, etc. They appear relatively sensitive to artifacts and
may require careful implementation.

The second question to be addressed is which features to select in order to best ac-
count for the individual and combined modalities. A single microphone is easy to set
up but it cannot provide spatial localization of sounds. A number of methods rely on
complex audio-visual hardware such as an array of microphones that are calibrated mu-
tually and with respect to one or more cameras [6, 8, 10]. Such a microphone array can
provide an estimate of the 3D location of each audio source; hence it is at the core of
such fusion strategies as partitioned sampling [6]. Here we use a microphone pair to
estimate the interaural time difference (ITD) which can in turn be used to estimate the
3D azimuth of several sound sources [13].

The advantage of using several cameras are numerous. One may use as many cam-
eras as needed in order to make all parts of a room observable ("smart room" concept).
This increases the reliability of visual feature detection because it helps to solve both the
occlusion problem and the non fronto-parallel projection problem. Nevertheless, select-
ing the appropriate camera to be used in conjunction with a moving target can be quite
problematic, environment changes require partial or total recalibration. Alternatively,
the use of a binocular camera pair allows the extraction of depth information through
the computation of stereo disparities. Current audio-visual models do not consider the
problem of speaker localization as a 3D problem, although speakers act in a 3D space.

We propose to use a human-like sensor: binaural hearing and binocular vision. It
seems that there has been no attempt to use stereoscopic depth cues in combination
with binaural cues such as ITD. The advantage of such a agent-centred setup is that
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it can operate in any type of environment. Another benefit is a symmetric integration
of seeing and hearing, in which none of the streams is assumed to be dominant and
weighting of the modalities is based on statistical properties of the observed data. The
originality of our approach is to embed the problem in the physical 3D space, which
is not only natural but has more discriminative power in terms of speaker localiza-
tion. Our approach makes use of spatial synchrony, but unlike the majority of existing
models, performing the binding in 3D space fully preserves localization information so
that the integration is reinforced. At the same time we do not rely on image features
such as structural templates [10], colour models [6] or face detectors, so that the model
becomes more general, flexible and stable. Our approach resembles those based on tem-
poral synchrony in the sense that we recast the problem of how to best combine audio
and visual data as the task of finding coherent groups of observations in data. The sta-
tistical method for solving this problem is cluster analysis: The 3D positions are chosen
as a common representation to which both audio and video observations are mapped,
through two Gaussian mixture models.

Our approach has the following main features: (i) a joint probabilistic model, spec-
ified through two mixture models sharing some common parameters, captures the re-
lations between audio and video observations, (ii) 3D speaker localization within this
framework is defined as maximum likelihood with missing data, and is carried out by a
specialized version of the Expectation Maximization (EM) algorithm, (iii) we show that
such a formulation results into a cooperative estimation of the 3D positions of multipel
speakers as well as the identification of the speakers’ activity (speaking or not speaking)
using procedures for standard mixture models.

The paper is organized as follows. Section 2 formulates the problem in terms of
maximum likelihood with missing data. Section 3 describes the associated generalized
EM algorithm. Section 4 describes experiments and results.

2 A Missing Data Model for Clustering Audio-Visual Data

Given a number of audio and visual observations, we address the problem of localizing
speakers in a 3D scene as well as determining their speaking state. We will first assume
that the number N of speakers is known. Section 4 addresses the question of how to
estimate this number when it is unknown. We consider then a time interval [t1, t2] dur-
ing which the speakers are assumed to be static. Each speaker can then be described by
its 3D location s = (x, y, z)T in space. We then denote by S the set of the N speak-
ers’ locations, S = {s1, . . . , sn, . . . , sN}, which are the unknown parameters to be
determined.

Our setup consists of a stereo pair of cameras and a pair of microphones from which
we gather visual and auditory observations over [t1, t2]. Let f={f1, . . . , fm, . . . , fM}
be the set of M visual observations. Each of them has binocular coordinates, namely
a 3D vector fm = (um, vm, dm)�, where u and v denote the 2D location in the Cy-
clopean image. This corresponds to a viewpoint halfway between the left and right
cameras, and is easily computed from the original image coordinates. The scalar d de-
notes the binocular disparity at (u, v)T . Hence, Cyclopean coordinates (u, v, d)T are
associated with each point s = (x, y, z)T in the visible scene. We define a function
F : R

3 → R
3 which maps s on f:
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where B is the length of the inter-camera baseline.
Similarly, let g = {g1, . . . , gk, . . . , gK} be the set of K auditory observations, each

represented by an auditory disparity, namely the interaural time difference, or ITD. To
relate a location to an ITD value we define a function G : R

3 → R which maps s on g:

G(s) = c−1
(‖s − sM1‖ − ‖s − sM2‖

)
(2)

Here c ≈ 330ms−1 is the speed of sound and sM1 and sM2 are microphone locations
in camera coordinates. We notice that isosurfaces defined by (2) are represented by one
sheet of a two sheet hyperboloid in 3D. So given an observation we can deduce the
surface that should contain the source.

We address the problem of speaker localization within an unsupervised clustering
framework. The rationale is that there should exist groups in the observed data that cor-
respond to the different audio-visual objects of the scene. We will consider mixtures
of Gaussians in which each component corresponds to a group or class. Each class is
associated to a speaker and the problem is recast as the assignment of each observa-
tion to one of the classes as well as the estimation of each class center. The centers of
the classes are linked to the quantities of interest namely the speakers 3D localizations.
More specifically, the standard Gaussian mixture model has to be extended in order to
account for the presence of observations that are not related to any speakers. We intro-
duce an additional background (outlier) class modelled as a uniform distribution, which
increases robustness. The resulting classes are indexed as 1, . . . , N, N + 1, the final
class being reserved for outliers. Also, due to their different nature, the same mixture
model cannot be used for both audio and visual data. We used two mixture models, in
two different observations spaces (our audio features are 1D while visual features are
3D) with the same number of components corresponding to the number of speakers
and an additional outlier class. The class centres of the respective mixtures are linked
through common but unknown speaker positions. In this framework, the observed data
are naturally augmented with as many unobserved or missing data. Each missing data
point is associated to an observed data point and represents the memberships of this ob-
served data point to one of the N + 1 groups. The complete data are then considered as
specific realizations of random variables. Capital letters are used for random variables
whereas small letters are used for their specific realizations. The additional assignment
variables, one for each individual observation, take their values in {1, . . . , N, N + 1}.
Let A = {A1, . . . , AM} denote the set of assignment variables for visual observations
and A′ = {A′

1, . . . , A
′
K} the set of assignment variables for auditory observations. The

notation {Am = n}, for n ∈ {1, . . . , N, N +1}, means that the observed visual dispar-
ity fm corresponds to speaker n if n 
= N + 1 or to the outlier class otherwise. Values
of assignment variables for auditory observations have the same meaning.

Perceptual studies have shown that, in human speech perception, audio and video
data are treated as class conditional independent [14, 15]. We will further assume that
the individual audio and visual observations are also independent given assignment
variables. Under this hypothesis, the joint conditional likelihood can be written as:
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P (f, g |a,a′) =
M∏

m=1

P (fm|am)
K∏

k=1

P (gk|a′
k). (3)

The different probability distributions to model the speakers on one side and the outliers
on the other side are the following. The likelihoods of visual/auditory observations,
given that they belong to a speaker, are Gaussian distributions whose means respectively
F(sn) and G(sn) depend on the corresponding speaker positions through functions F
and G defined in (2) and (1). The (co)variances are respectively denoted by Σn and σ2

n,

P (fm|Am = n) = N (fm|F(sn),Σn

)
, (4)

P (gk|A′
k = n) = N (gk|G(sn), σ2

n

)
. (5)

Similarly, we define the likelihoods for an visual/auditory observation to belong to an
outlier cluster as uniform distributions:

P (fm|Am = N + 1) = 1/V and P (gk|A′
k = N + 1) = 1/U, (6)

where V and U represent the respective 3D and 1D observed data volumes (see Sect.4).
For simplicity, we then assume that the assignment variables are independent. More

complex choices would be interesting such as defining some Markov random field
model to account for more structure between the classes. Following [16] the imple-
mentation of such models can then be reduced to adaptive implementations of the inde-
pendent case making it natural to start with

P (a,a′) =
M∏

m=1

P (am)
K∏

k=1

P (a′
k) . (7)

The prior probabilities are denoted by, for all n = 1, . . . , N +1, πn = P (Am = n) and
π′

n = P (A′
k = n). The posterior probabilities, denoted by αmn = P (Am = n|fm)

and α′
kn = P (A′

k = n|gk), can then be calculated, for all n = 1, . . . , N + 1, using
Bayes’ theorem. For n 
= N + 1, using (4) and (5) we obtain for each m = 1, . . .M

αmn =
|Σn|−1/2 exp

(
− 1

2 ‖fm −F(sn)‖2
Σn

)
πn

N∑
i=1

|Σi|−1/2 exp
(
− 1

2 ‖fm −F(si)‖2
Σi

)
πi + (2π)3/2V −1πN+1

(8)

and for each k = 1, . . . K

α′
kn =

|σn|−1 exp
(
− (gk − G(sn))2 /

(
2σ2

n

))
π′

n

N∑
i=1

|σi|−1 exp
(
− (gk − G(si))

2
/ (2σ2

i )
)

π′
i + (2π)1/2U−1π′

N+1

, (9)

where we adopted the notation ‖x‖2
Σ = xTΣ−1x for the Mahalanobis distance.



Audio-Visual Clustering for 3D Speaker Localization 91

3 Estimation Using the Expectation Maximization Algorithm

Given the probabilistic model defined above, we wish to determine the speakers that
generated the visual and auditory observations, that is to derive values of assignment
vectors A and A′, together with the speakers’ position vectors S. The speakers’ posi-
tions are part of our model unknown parameters. Let Θ denote the set of parameters
in our model, Θ = {s1, . . . , sN ,Σ1, . . . ,ΣN , σ1, . . . , σN , π1, . . . , πN , π′

1, . . . , π
′
N} .

Direct maximum likelihood estimation of mixture models is usually difficult, due to the
missing assignments. The Expectation Maximization (EM) algorithm [17] is a general
and now standard approach to maximization of the likelihood in missing data problems.
The algorithm iteratively maximizes the expected complete-data log-likelihood over
values of the unknown parameters, conditional on the observed data and the current
values of those parameters. In our clustering context, it provides unknown parameter
estimation but also values for missing data by providing membership probabilities to
each group. The algorithm consists of two steps. At iteration q, for current values Θ(q)

of the parameters, the E step consists in computing the conditional expectation with
respect to variables A and A′,

Q(Θ,Θ(q)) =
∑

a,a′∈{1,N+1}M+K

log P (f, g, a, a′;Θ) P (a, a′|f, g,Θ(q)) (10)

The M step consists in updating Θ(q) by maximizing (10) with respect to Θ, i.e. in
finding Θ(q+1) as Θ(q+1) = arg max

Θ
Q(Θ,Θ(q)). We now give detailed descriptions

of the steps, based on our assumptions.

E Step. We first rewrite the conditional expectation (10) taking into account decom-
positions (3) and (7) that arise from independency assumptions. This leads to Q(Θ,
Θ(q)) = QF(Θ,Θ(q)) + QG(Θ,Θ(q)) with

QF(Θ,Θ(q)) =
M∑

m=1

N+1∑
n=1

α(q)
mn log(P (fm|Am = n;Θ) πn)

and QG(Θ,Θ(q)) =
K∑

k=1

N+1∑
n=1

α
′(q)
kn log(P (gk|A′

k = n;Θ) π′
n),

where α
(q)
mn and α

′(q)
kn are the expressions in (8) and (9) for Θ = Θ(q) the current

parameter values. Substituting expressions for likelihoods (4) and (5) further leads to

QF(Θ,Θ(q)) = − 1
2

M∑
m=1

N∑
n=1

α(q)
mn

(
‖fm −F(sn)‖2

Σn
+ log

(
(2π)3|Σn|π−2

n

))

− 1
2

M∑
m=1

α
(q)
m,N+1 log

(
V 2π−2

N+1

)
(11)
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and QG(Θ,Θ(q)) = − 1
2

K∑
k=1

N∑
n=1

α
′(q)
kn

(
(gk − G(sn))2

σ2
n

+ log(2πσ2
nπ′−2

n )
)

− 1
2

K∑
k=1

α
′(q)
k,N+1 log(U2π′−2

N+1) . (12)

M Step. The goal is to maximize (10) with respect to the parameters Θ to find Θ(q+1).
Optimal values for priors πn and π′

n are easily derived independently of the other
parameters by setting the corresponding derivatives to zero and using the constraints
N+1∑
n=1

πn = 1 and
N+1∑
n=1

π′
n = 1. The resulting expressions are

n = 1, . . . , N + 1, π(q+1)
n =

1
M

M∑
m=1

α(q)
mn and π′

n
(q+1) =

1
K

K∑
k=1

α
′(q)
kn . (13)

The optimization with respect to the other parameters is less straightforward. Using
a coordinate system transformation, we substitute variables s1, . . . , sN with f̂1 =
F(s1), . . . , f̂N = F(sN ). For convenience we introduce the function h = G◦F−1 and

the parameter-set Θ̃ =
{

f̂1, . . . , f̂N ,Σ1, . . . ,ΣN , σ1, . . . , σN

}
. Setting the deriva-

tives with respect to the variance parameters to zero, we obtain the empirical variances.
Taking the derivative with respect to f̂n gives

∂Q

∂f̂n

=
M∑

m=1

αmn

(
fm − f̂n

)T

Σ−1
n +

1
σ2

n

K∑
k=1

α′
kn

(
gk − h(f̂n)

)
∇�

n (14)

where the vector ∇n is the transposed product of Jacobians ∇n =
(

∂G
∂s

∂F−1

∂f

)T

f=
ˆf

n

which can be easily computed from definitions (1) and (2). The resulting derivation
includes a division by d and we note here that cases when d is close to zero correspond
to points on very distant objects (for fronto-parallel setup of cameras) from which no
3D structure can be recovered. So it is reasonable to set a threshold and disregard the
observations that contain small values of d.

Difficulties now arise from the fact that it is necessary to perform simultaneous opti-
mization in two different observation spaces, auditory and visual. It involves solving a
system of equations that contain derivatives of QF and QG whose dependency on sn is
expressed throughF and G and is non-linear. In fact, this system does not yield a closed
form solution and the traditional EM algorithm cannot be performed. However, setting
the gradient (14) to zero leads to an equation of special form, namely the fixed point
equation (FPE), where the location f̂n is expressed as a function of the variances and
itself. Solution of this equation together with the empirical variances give the optimal
parameter set. for this reason we tried the versions of the M-step that iterate through
FPE to obtain f̂n. But we observed that such solutions tend to make the EM algorithm
converge to local maxima of the likelihood.
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An alternative way to search for the optimal parameter values is to use a gradient
descent-based iteration, for example, the Newton-Raphson procedure. However, the fi-
nal value Θ̃(q+1) is not necessarily a global optimizer. Provided that the value of Q
is improved on every iteration, the algorithm can be considered as an instance of the
Generalized EM (GEM) algorithm. The updated value Θ̃(q+1) can be taken of the form

Θ̃(q+1) = Θ̃(q) + γ(q)Γ(q)

[
∂Q(Θ,Θ(q))

∂Θ̃

]T

Θ=Θ(q)

(15)

where Γ(q) is a linear operator that depends on Θ̃(q) and γ(q) is a scalar sequence
of gains. For instance, for Newton-Raphson procedure one should use γ(q) ≡ 1 and

Γ(q) = −
[

∂2Q

∂Θ̃2

]−1

Θ=Θ(q)
. The principle here is to choose Γ(q) and γ(q) so that (15)

defines a GEM sequence. In what follows we concentrate on the latter algorithm since
it gives better results and potentially more flexibility then the FPE formulation.

Clustering. Besides providing parameter estimation, the EM algorithm can be used
to determine assignments of each observation to one of the N + 1 classes. Observa-
tion fm (resp. gk) is assigned to class ηm (resp. η′

k) if ηm = argmax
n=1,...N+1

αmn (resp.

η′
k = argmax

n=1,...N+1
α′

kn). We use this in particular to determine active speakers using the

auditory observations assignments η′
k’s. For every person we can derive the speaking

state by the number of associated observations. The case when all η′
k’s are equal to

N + 1 would mean that there is no active speaker.

4 Experimental Results

Within the task of multi-speaker localization there are three sub-tasks to be solved.
First, the number of speakers should be determined. Second, the speakers should be
localized and finally, those who are speaking should be selected. The proposed prob-
abilistic model has the advantage of providing a means to solve all three sub-tasks at
once. There is no need to develop separate models for every particular sub-task, and at
the same time we formulate our approach within the Bayesian framework which is rich
and flexible enough to suit the requirements.

To determine the number of speakers, we gather sufficient amount of audio observa-
tions and apply the Bayesian Information Criterion (BIC) [18]. This is a well-founded
approach to the problem of model selection, given the observations. The task of local-
ization in our framework is recast into the parameter estimation problem. This gives
an opportunity to efficiently use the EM algorithm to estimate the 3D positions. We
note here that our model is defined so as to perform well in the single speaker case as
well as in the multiple speakers case without any special reformulation. To obtain the
speaking state of a person we use the posterior probabilities of the assignment variables
calculated at the E step of the algorithm.

We evaluated the ability of our algorithms to estimate the 3D locations of persons
and their speaking activity in a meeting situation. The audio-visual sequence that we
used is a part of the scenario set that was acquired by the experimental setup shown
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Fig. 1. This figure shows the mannequin used in our experiments as well as a typical setup. It is
equipped with a binaural microphone pair and a camera binocular pair. When the mannequin is
moved around, the position and orientation of its head are recorded as well.

in Fig.1. A mannequin with a pair of microphones mounted into its ears and a pair of
stereoscopic cameras attached to its forehead, served as the acquisition device. This
configuration allows to record data from the perspective of a person, i.e., what a person
would hear and see. Each of the recorded scenarios comprised two audio tracks and two
sequences of images, together with calibration information1. The sequence of interest
in our case is a meeting scenario (500 stereo-frames at 25fps), shown on Figure 22.
There are 5 persons seating around a table, but only 3 persons are visible. The algo-
rithm was applied to short time intervals that correspond to three video frames. Audio
and visual observations were collected within each interval using the following tech-
niques. A standard procedure was used to identify "interest points" in the left and right
images [19]. These features were put into binocular correspondence by comparing the
local image-structure at each of the candidate points, as described in [20]. The cameras
were calibrated [21] in order to define the (u, v, d)T to (x, y, z)T mapping (1). Auditory
disparities were obtained through the analysis of cross-correlogram of the filtered left
and right microphone signals for every frequency band [13]. On an average, there were
about 1200 visual and 9 auditory observations within each time interval.

We report here on the results obtained by the versions of the algorithm based on a gra-
dient descent (GD) technique, with Γ being block diagonal. We used h

−∂2Q/∂f̂2
n

i−1
Θ=Θ(q)

as a block for f̂n, so that the descent direction is the same as in Newton-Raphson
method. In the examples that we present we adopted the same video variance matrix
Σ for all the clusters, thus there was one common block in Γ(q) that performed linear

mapping of the form Γ(q)
Σ (·) =

(
N∑

n=1

M∑
m=1

α
(q)
mn

)−1

Σ(q) (·)Σ(q). This direction change

corresponds to a step towards the empirical variance value. Analogous blocks (cells)
were introduced for audio variances, though, unlike the visual variances, individual
parameters were used. We performed one iteration at each M step, as further itera-
tions did not yield significant improvements. The sequence of gains was chosen to be

1 The experimental data are available at
http://perception.inrialpes.fr/CAVA_Dataset/

2 Static scenario M1: http://perception.inrialpes.fr/CAVA_Dataset/Site/
data.html#M1

http://perception.inrialpes.fr/CAVA_Dataset/
http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#M1
http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#M1
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Fig. 2. A typical output of the algorithm: stereoscopic image pair, histogram of ITD observation
space and 3D clustering (see text for details)

γ(q) ≡ 1 (classical GD) and γ(q) = 0.5 + 1/(2(q + 1)) (relaxed GD). Relaxed GD
showed moderate behaviour around the optimal point, which causes slower, but more
stable convergence with respect to classical GD. This feature of the relaxed GD could
prove to be useful in the case of strong noise. By adjusting γ(q) one can improve certain
properties of the algorithm, such as convergence speed, accuracy of the solution as well
as its dynamic properties in the case of parameters changing through time.

Currently we use the Viola-Jones face detector [22] to initialize the first run of the
EM algorithm from visual disparities that lie within faces. But the results of application
of BIC criterion to the observations show that it is capable of determining correctly
the number of speakers. Hence we do not strongly rely on initial face detection. As we
consider the dynamic evolution of the algorithm, the current estimates provide good
initializations for the next run of the algorithm.

Figure 2 shows a typical output of our algorithm applied to a time interval. The in-
terest points are shown as dots in the left and right images. The 3D visual observations
are shown in x, y, z space, below the images. One may notice that after stereo recon-
struction there are both inliers and outliers, as well as 3D points that belong to the
background. The histogram representation of the ITD observation space is given in the
middle. Transparent ellipses in the images represent projections of the visual covari-
ances corresponding to 3D clusters. The three 3D spheres (blue, red and green) show
the locations of cluster centers. Transparent grey spheres surround the current speakers
(there are two speakers in this example), also shown with white circles in the image
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pair. Clusters in the ITD space have a similar representation: the transparent coloured
rectangles designate the variances of each cluster, while solid coloured lines drawn at
their centres are the corresponding cluster centres. We would like to emphasize the fact
that despite the majority of visual observations being located on the central speaker,
the influence of the audio data helped to keep the location estimates distinct. At the
same time, owing to fine spatial separation of the visual data, the auditory variances
were adapted rather than the means. This shows the benefits of the combined generative
model with respect to separate modality-specific models. The proposed model does not
require any explicit modality weighting, as soon as the variances in (14) encode the
"reliability" of the observations and the weighting occurs on parameter estimation.

The model was tested on 166 time intervals taken from the meeting scenario with 89
occurences of auditory activity. The soundtrack was labelled manually on the basis of
detected onsets and offsets. In total 75 occurences were detected with error probabilities
for "missed target" (speaking person detected as non-speaking) and "false alarm" (non-
speaking person detected as speaking) being P1 = 0.16 and P2 = 0.14 respectively.
Analysis showed that many errors of the first type are due to discretization (frames are
processed independently) and proper "dynamic" version of the algorithm could poten-
tially reduce P1 to 0.08. Currently the auditory observations are collected even when
there is no prominent sound, which gives birth to the major part of "false alarm" er-
rors. Such low-energy regions of spectrogram can be detected and suppressed leading
to P2 = 0.07. The location estimates for the persons in the middle (green) and on the
right (red) lie within their bodies and do not change much. Being accumulated along all
chosen time intervals, they form dense clouds of radius 2cm and 4cm respectively. For
the person on the left (blue), 97% estimates lie within the body and form the cloud of
radius 5cm, though the rest 3% are 10cm away. The reason for this behaviour is, again,
the discretization and the problem can be easily resolved by means of tracking. These
results show that the model demonstrates reliable 3D localization of the speaking and
non-speaking persons present in the scene.

5 Conclusion

We presented a unified framework that captures the relationships between audio and
visual observations, and makes full use of their combination to accurately estimate the
number of speakers, their locations and speaking states. Our approach is based on un-
supervised clustering and results in a very flexible model with further modelling capa-
bilities. In particular, it appears to be a very promising way to address dynamic tracking
tasks.
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Abstract. In this paper we present a sound probabilistic approach to speaker
diarization. We use a hybrid framework where a distribution over the number of
speakers at each point of a multimodal stream is estimated with a discriminative
model. The output of this process is used as input in a generative model that
can adapt to a novel test set and perform high accuracy speaker diarization. We
manage to deal efficiently with the less common, and therefore harder, segments
like silence and multiple speaker parts in a principled probabilistic manner.

1 Introduction

The objective of speaker diarization is to segment a digital recording in speaker-
homogenous parts [12]. Automating this task, enables machines to acquire a better con-
ceptual understanding of a multimodal recording. Furthermore, the output of speaker
diarization can be used to improve sentence segmentation [1], and Automatic Speech
Recognition (ASR) [8], thus consisting a very important step in analyzing multi-speaker
digital recordings. The implementation of a robust system that performs automatic
speaker diarization is a formidable task for three reasons. Firstly, in order to be applica-
ble to novel digital recordings, we cannot assume the existence of any speaker-specific
training data. Secondly, in order for our system to be robust in different scenarios, we
cannot assume knowledge of the microphone locations, or the existence of microphone
arrays. Thirdly, if we want to use the output of the framework to improve ASR, we need
to segment the digital recording with high precision. If our results have low temporal
precision, we will have many segments that contain speech from multiple speakers,
and therefore produce low confidence classification and little utility- Cuendet et. al. in
[13] showed that increasing the labeling precision of dialog acts by removing the low
confidence parts from the training data will increase the ASR performance.

In recent research, there have been many different approaches to speaker diarization.
In general, most approaches perform clustering in the audio descriptor space, and expect
the clusters discovered to correspond to speaker-homogenous parts. The main problem
then lies in dealing with silent parts and multiple-speaker situations, since they both
appear for a very small fraction of the digital recording. For example, Laskowski and
Schultz, in [8], assign segments of the audio stream to speakers through unsupervised

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 98–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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clustering in the audio descriptors space. Using this initial assignment, they learn each
person’s voice model, and use feature space rotation or sample-level overlap synthesis to
deal with multi-speaker parts. With these techniques they use the single-speaker models
to predict the distribution of the descriptors coming from the multi-speaker segments.
Angueral et.al. in [1], use a preprocessing step to exclude non-speech data from the
stream, and use agglomerative clustering in the remaining data to assign each recording
segment to the corresponding speaker. In this case, there is an assumption that all speech
segments were generated by a single speaker.

In speech recognition or speaker identification, a person’s voice is modeled in a gen-
erative way [4,6,10]. Furthermore, in [1] and [8], the speaker diarization is evaluated
based on the improvement of the ASR, which is performed with a generative model
(Hidden Markov Model (HMM)/Gaussian Mixture Model (GMM)). Applying a gener-
ative model directly to speaker diarization is much harder.

In general we shall denote the number of participants with P , but for the moment,
consider an example recording of two participants. Let’s assume that the voice models
are given and they are parameterized by θ1 and θ2. An audio descriptor at time t, (At),
can be generated from four different system states, corresponding to one, none, or both
of the persons speaking. In general the system state space is of size 2P . We denote
the system state on time t with xt, which is a binary vector of length P . It is trivial
to decide which person most probably generated At, by comparing p (At|θp) for p =
1 : P . However, evaluating the system states is not that straightforward. In order to
evaluate p (At|xt) directly, we would need a state-specific distribution. However, some
system states appear very rarely in our stream. Thus, we have too little data to learn the
parameters of their distribution reliably.

A typical solution in this case is to assume that the state of each participant is in-
dependent of the state of the others. Although in a linguistic perspective this is not the
case, from a signal processing side of view, it is a very realistic assumption - a person’s
voice model does not depend on who is speaking at the same time but we do take into
consideration the state of the other speakers while we speak. In our example, consider
the state where the second person is speaking, this would be:

p (At|xt) =
p (xt|At) p (At)

p (xt)
=
∏

p:1..P

p (xt(p)|At) p (At)
p (xt(p))

=
∏

p:1..P

p (At|xt (p)) (1)

with xt(1) = 0 and xt(2) = 0.
Assuming the state of different speakers independent of each other, we are left with

the formidable task of estimating p (At|xt(p)) for xt(p) = 0, which is the probability
that a person generated this audio descriptor when they are not speaking. This is a
quantity which we can not define directly from our data. We can approximate it as a very
broad uniform distribution in the feature space, or as the average over all the segments
where person p is silent. However, in this case, comparing states which imply a different
number of speakers becomes problematic. All speaking segments are more likely to be
generated by a voice model than from their average, while all silent segments exhibit the
opposite behavior. Thus, we will either assign each segment to an everyone-speaking
situation or to a nobody-speaking one.
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In section 2 we describe a way to overcome this problem and perform generative
speaker diarization, using a simple preprocessing step in which we estimate a distribu-
tion over the number of simultaneous speakers on each instant. In section 3 we test two
different models for labeling time sequences in the task of determining the number of
speakers on each time slice, a HMM and a Conditional Random Field (CRF). In sec-
tion 4 we show the improvement on speaker diarization on audio streams coming from
smart meeting rooms. In section 5 we conclude this paper with a short discussion of the
proposed model and the results achieved.

2 Generative Modeling of Multiple Speakers

As described earlier, in a generative approach we need to estimate the probability that
the audio descriptor At at time t was generated by each system state xt. Namely we
need to compute p (At|xt) which is proportional to p (xt|At). In order to do this, we
define a distribution over the number of speakers at time t, p (n|At). We describe how
we acquire a distribution over the number of speakers for each segment of the recording
in section 3

In this case, we can rewrite p (xt|At) as:

p (xt|At) =
∑
n

p (xt, n|At)

=
∑
n

p (xt|At, n) p (n|At)

=
∑
n

p(At,n|xt)p(xt)P
x p(At,n|xt)p(xt)

p (n|At)

=
∑
n

p(At|xt)p(n|xt)p(xt)P
x p(At|xt)p(n|xt)p(xt)

p (n|At)

(2)

for clarity of presentation we define as ns(xt) a function which returns the number of
speakers implied by xt. At this point, we notice that p (n|xt) is 1 for n equal to ns(xt)
and 0 otherwise. Thus we simplify equation 2 in:

p (xt|At) =
p (At|xt) p (xt)∑

x:ns(x)=n p (At|xt) p (xt)
p (ns (xt) |At) (3)

Now, from equation 1 we can express p (At|xt) as:

p (At|xt) =
∏
p

p (At|θp)
xt(p) Q1−xt(p)

= [N − ns (xt)] Q
∏

p:xt(p)=1

p (At|θp)
xt(p) (4)

where Q = p (At(i)|xt (j)) for xt (j) = 0. Assigning the same Q for all speakers
j, implies that all the persons affect the audio stream the same way when they do not
speak, and it is a reasonable assumption. If we use uniform p (xt) for all possible states
we get:

p (xt|At) = p (ns (xt) |At)

∏
p:xt(p)=1 p (At|xt)∑

x:ns(x)=n

∏
p:xt(p)=1 p (At|xt)

(5)
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Intuitively, we have one unit of probability mass to distribute among the different
possible system states. The states are grouped based on the number of speakers that
each state implies, and the term p (ns (xt) |At) determines what part of the probability
mass is allocated to each group. This part is then distributed among the states of the
group through the second term of the product.

3 Modeling the Number of Speakers

The objective of our data preprocessing step is to estimate a distribution over the differ-
ent numbers of speakers for each segment of the recording. Since the temporal patterns
of the data are very important for such a task, we compared two probabilistic models
that take into consideration the temporal relationships in our data. A generative one, in
the form of a HMM [11], and a discriminative one, in the form of a linear CRF [7].

A HMM is a generative probabilistic model, defined fully by the prior probability of
the system to be at each state on the first time slice of the model π; the transition distri-
bution p (nt|nt−1) representing the probability of going from state nt−1 at time t − 1
to state nt, and the observation model that defines the probability that an observation
At was generated by state nt, namely p (At|nt). A graphical representation of a HMM
can be seen in figure 1(a).

A linear chain CRF, parameterizes is a discriminative probabilistic model that resem-
bles closely the HMM. As we can see in figure 1(b), the model still consists of a hidden
variable and an observable variable at each time step. However, the arrowheads of the
edges between the various nodes have disappeared, making this an undirected graphical
model. This means that two connected nodes no longer represent a conditional distri-
bution (e.g. p (At|nt)), but instead we speak of the potential between two connected
nodes. This potential also represents the chance of observing a specific configuration of
its variables, but unlike a probability is not restricted to be a value between 0 and 1.

The potential functions that specify the linear-chain CRF are ψ(nt, nt−1) and
ψ(nt, At). For clarity of representation these potential functions are written down using
a more uniform notation, which allows different forms of CRFs to be expressed using
a common formula. In this work, we adopt the notation of [14] and therefore define:

1tn tn 1+tn

1tA tA 1+tA

(a) A Hidden Markov Model

1tn tn 1+tn

1tA tA 1+tA

(b) A Conditional Random
Field

Fig. 1. The two models compared for estimating the number of speakers on each time slice. The
grey nodes denote hidden variables, while the white nodes depict observable ones.
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ψ(nt = i, nt−1 = j) = λijkfij(nt, nt−1, At) in which the λij is the parameter value
(the actual potential) and fijk(nt, nt−1, At) is a feature function which in our case can
be a binary indicator of whether nt = i and nt−1 = j or it returns the value of the
specific feature respectively. The index ij is typically replaced by a one-dimensional
index, denoted here with k, so we can easily represent the summation over all the dif-
ferent potential functions.

The essential difference between HMMs and CRFs lies in the way we learn the
model parameters. In the case of HMMs the parameters are learned by maximizing the
joint probability distribution p(n1:T , A1:T ). The parameters of a CRF are learned by
maximizing the conditional probability distribution p(n1:T | A1:T ). One of the main
consequences of this choice, is that while learning the parameters of a CRF, we avoid
modeling the distribution of the observations, p (A). The conditional probability is mod-
eled as:

p (n1:T |A1:T ) =
1

Z(A)
exp

{
K∑

k=1

λkfk(nt, nt−1, At)

}
(6)

where Z(A) is the normalization function

Z(A) =
∑
nt

exp

{
K∑

k=1

λkfk(nt, nt−1, At)

}
(7)

Note that the quantity p(n1:T |A1:T ) is convex in the λ-space, and we can use any opti-
mization algorithm to obtain the optimal λ values. In our implementation we used the
BFGS algorithm [2] which was shown to be the most efficient approach [14].

We trained and tested both our models on 2 hours of data, coming from multiple
speakers. In this corpora, coming mainly from interviews and video-conferences, the
number of speakers on each time window was set manually. We extracted the 13 first
Mel frequency cepstra coefficients, and concatenated their first and second order dif-
ferences. Thus, a 39 dimensional vector was created for each audio window, while the
stream was segmented in 25 ms audio windows with 10 ms overlap. The HMM mod-
eled the generative distribution for different numbers of speakers as a Gaussian mixture
model of 15 components with diagonal covariances. The CRF used one feature func-
tion per dimension which returned the observation value itself. We selected the pre-
processing model for our final framework using 10-fold cross validation on this data.
The results achieved under both models can be seen in table 1.

Table 1. Cross validation results (%) acquired on determining the number of speakers

HMM 0 1 2 3 4

0 88.38 6.79 0.543 2.71 1.56
1 23.98 49.04 9.17 13.17 4.61
2 10.32 14.94 33.08 17.32 24.32
3 15.89 23.43 16.03 21.12 23.50
4 4.07 9.17 13.17 16.6 56.92

CRF 0 1 2 3 4

0 82.74 10.05 0.95 3.73 2.51
1 18.07 60.59 14.6 5.91 0.81
2 2.64 25.40 41.50 21.8 8.55
3 2.71 8.49 24.86 38.79 25.13
4 3.66 3.05 4.75 20.58 67.93
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The CRF performed much better than the HMM, and therefore it was preferred for
our final implementation. The main diagonal of the confusion matrixes contains the
accuracy per class, and CRF was able to distinguish multiple speaker states much better.
It is interesting to notice that the two diagonals near the central one, highlighted with a
gray background in table 1, contain the main mass of classifications. This is reasonable,
since when on person is speaking there are long pauses, and while two or more people
are speaking it is often the case that only 2 of them are active over such a small time
window of 25ms.

Finally, it is important to notice that the number of speakers on a time slice can be es-
timated using parameters trained with speaker-independent data. Therefore, a discrim-
inative approach, like the CRF, which requires labeled data, can also be used. In actual
speaker diarization, described in section 4, we require speaker-specific voice models,
without assuming the existence of any labeled speaker-specific data. Thus, we can only
use a generative approach, and learn the parameters of each person’s model directly
from our test data, using the Expectation Maximization algorithm [3].

4 Inference for Speaker Diarization

The distribution on the number of speakers of each time-slice, acquired from the pre-
processing step, is used as observation in our speaker diarization model. The graphical
representation of the proposed probabilistic model can be seen in figure 2 and comes in
the form of a HMM. The generative choice here is necessary, since we want to learn the
parameters of our model directly from our training data.

In the proposed approach, we assume a recording containing P persons. Therefore,
the possible system states take values from a discrete space of 2P values. We represent
these states as binary vectors, with the pth element being 1 if the corresponding person
is speaking and 0 otherwise. We assume a uniform prior probability for the system being

1tx tx 1+tx

1tA tA 1+tA

P P P

1tn tn 1+tn

Fig. 2. The model used for learning and inference during speaker diarization. Notice that node
X(p) is repeated P times at each time slice. The state of different persons at a specific time slice
t (Xt(p)) are interdependent since they are parents of the same observable node At, but they are
independent at the transition phase.
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in any state at the beginning of the stream. The transition matrix, A, is of size 2P ×
2P , with the element Aij corresponding to the probability p (xt = j|xt−1 = i). This
creates a very number of parameters (2P (2P − 1)), with some specific state transitions
becoming very improbable, or even never appearing in a given recording. We reduce
the number of necessary parameters to 2P assuming that the transition of each person’s
state is independent of the others. In principle, humans perceive the changes in the state
of their co-speakers and act based on this, but in practice this simplification works well.
Thus we denote with A1

p the probability that person p will remain speaking in a system
transition (p (xt(p) = 1|xt−1(p) = 1)), and A0

p that person p will remain silent, and we
get:

Aij = p (xt = j|xt−1 = i) =
∏

P
p (xt(p)|xt−1(p)) (8)

where we need to learn 2P Ap parameters. Finally, the observation model defines
the probability that a specific observation was generated from a given system state,
p (At|xt). We acquire this using Bayes Rule:

p (At|xt) =
p (xt|At) p (At)

p (xt)
(9)

and assuming uniform priors for all different system states.

5 Learning with the E.M.

The framework presented so far is generic, in the sense that any voice model can be
incorporated to model p (At|xt(p) = 1). In our implementation we modeled each par-
ticipants voice with a 15 component Gaussian mixture model in the feature space. In
order to perform speaker diarization as described in section 4, we need to acquire the
voice model and the transition probabilities for each person. We acquire these parame-
ters using the E.M. algorithm [3] directly on the test data.

In the E-step, we estimate the expectation of the system to be at a specific state on
each time slice. We perform the forward procedure, which estimates αi(t) = p (A1..t,
xt = i) and the backward procedure that estimates βi(t) = p (At+1..T |xt = i) for
all time slices. These quantities can be computed efficiently using a recursive formula,
more details of which can be found in [3]. We can now estimate the probability of the
system to be in state i at t, γi(t) = p (xt = i|A1..T ) as:

γi(t) =
αi(t)βi(t)∑2P

i=1 αj(t)βj(t)
(10)

as well as the probability of the system having a transition from state i to state j at time
t, ξij(t) = p (xt = i, xt+1 = j|A1..T ) as:

ξij(t) =
γi(t)Aijp (At+1|xt = j) βj(t + 1)

βi(t)
(11)

In our case, the state of each person is independent of the others. Thus, the probability
of a person to be speaking on a specific time slice is γp(t) = p (xt(p) = 1|A1..T ):

γp(t) =
∑

i:xt(p)=1
γi(t) (12)
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and the probability of a person transition from state k to l, denoted as ξp
kl(t)

ξp
kl(t) =

∑
i:xt(p)=k,j:xt+1(p)=l

ξij(t) (13)

In the m-step we are going to use these expectations to set the model parameters to
the values that maximize the complete-data likelihood. For each person:

A0
p =

∑
T ξp

00∑
T 1 − γp(t)

A1
p =

∑
T ξp

11∑
T γp(t)

(14)

which correspond to the expectation of person p to remain silent or speaking.
The voice model of each person is modeled as a Gaussian mixture model of 15

components. For each component c we need to estimate the mean μp
c , covariance Σp

c

and mixture proportion πp
c . If we denote with pp

c(t) the probability that observation At

was generated from the cth component of the pth person, then

pp
c(t) = γp(t)

N (At; μp
cΣ

p
c )∑

c N (At; μ
p
cΣ

p
c )

(15)

where N denotes the Gaussian kernel. The M-step equations become:

μp
c = 1

Nc

∑
t

pp
c(t)At

Σp
c = 1

Nc

∑
t

pp
c(t) (μc − At (i))2

πp
c = NcP

c
Nc

(16)

where Nc =
∑
t

pp
c(t). Note here that (μc − At (i))2 represents raising element-wise

the result in the power of 2, leading to spherical covariance matrices.

6 Results

We applied the proposed model to perform speaker diarization in a 30 minutes audio
recording, coming from a smart meeting room. The recording was part of the AMI
corpus and comes from the IDIAP smart meeting room [9]. The recording code is
IDI 20051213-1422. The objective of the experiment was threefold. First, we are in-
terested in the accuracy of the CRF in detecting the correct number of speakers for each
time slice. Second, we wanted to see how well the generative approach described in sec-
tion 2 can handle the parts that multiple speakers vocalize. Thirdly, we want to see how
much this improves the speaker diarization results in comparison with approaches that
follow the typical assumptions of a single-speaker per time slice, or a single-speaker
after removing the silence parts.

Initially, in section 6.1, we present the results on detection of the number of speakers.
In section 6.2, we present the results in the task of speaker diarization on our data. The
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proposed method of speaker diarization is very generic since any voice model or feature
space can be used. We perform speaker diarization under three different experimental
settings, in order to see how efficiently we cope with multiple simultaneous speakers.
In the first setup, our proposed model is applied, multi-speaker system states are de-
tected, and results acquired through this model are labeled as full. We then lowered
the dimensionality of our hidden states space, to that including only states implying a
single speaker or silence. We label this experiment as low. Finally, we excluded the au-
dio windows labeled from our CRF as silence in preprocessing step, and used a model
containing only the single speaker states. This experiments are denoted as pre. In the
low experiments, we did not use the distribution over the number of speakers but in-
stead modeled silence as a fifth speaker. In the pre experiments, the distribution over
the number of speakers would not make any difference since all states correspond to a
single speakers. Finally, in section 6.3 the results on classification of multiple speaker
parts are detected.

6.1 Accuracy in Detection of Number of Speakers

The results of speaker diarization using the speaker independent data can be seen in
table 2. As we can see, the CRF exhibits similar behavior with that in table 1, where it
manages to distinguish the different number of speakers reliably. Furthermore, it distin-
guishes very well between silence and single speaker windows, which is very important
since these are the dominant classes of a meeting recording. The CRF is not a Bayesian
model. Therefore, the conditional probability p (n1:T |A1:T ) that we maximize, is not a
posterior but a conditional likelihood function. In order to focus the classification ac-
curacy on silence and single speaker data, we had to train our model with a dataset
containing more data from the specific classes.

The overall Diarization Error (DER) in determining the correct number of speakers
was 44%. A task commonly tackled in diarization systems is distinguishing between
speech and non-speech parts. In this case, the proposed CRF has a 14% DER. In the
work of [5], the baseline system applied in similar recordings has a 16.8% error in
the distinguishing speech from non-speech parts, while the improved version exhibits
a DER of 4.3%. Since our system was not specifically trained to distinguish between
speech and non-speech parts the 14% DER in this task is satisfactory. The CRFs can
provide a useful tool for separation of speech and non-speech parts.

Table 2. Number of speakers detection accuracy on the audio recording coming from the IDIAP
smart meeting room data

Number of Speakers
Accuracy 0 1 2 3 4

0 0.52 0.43 0 0.02 0.01
1 0.018 0.96 0.0 0.01 0.01
2 0.01 0.75 0.19 0.03 0.01
3 0 0.74 0.11 0.14 0
4 0 0.17 0 0 0.82
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Table 3. Speaker diarization results

Pre 0 1 2 3 4
0 0.00 0.67 0.13 0.12 0.07
1 0.00 0.40 0.21 0.18 0.20
2 0.00 0.23 0.46 0.14 0.14
3 0.00 0.19 0.13 0.48 0.18
4 0.00 0.11 0.08 0.13 0.66

Low 0 1 2 3 4
0 0.79 0.07 0.05 0.05 0.03
1 0.11 0.35 0.18 0.15 0.18
2 0.14 0.17 0.44 0.12 0.13
3 0.14 0.11 0.15 0.44 0.16
4 0.09 0.07 0.06 0.11 0.64

Full 0 1 2 3 4
0 0.72 0.14 0.02 0.08 0.03
1 0.10 0.41 0.15 0.13 0.18
2 0.17 0.13 0.48 0.12 0.08
3 0.12 0.09 0.10 0.54 0.14
4 0.09 0.07 0.06 0.11 0.63

6.2 Accuracy in Speaker Diarization

In table 3 we can see the results achieved under the three different assumptions. In
pre, we assume that each window was created by a sinsgle speaker. As a consequence,
the silence parts are also assigned to a speaker. The segments belonging to a single
speaker have high classification accuracy, since there are no multi-speaker or silent
system state labels available to the model. The random classification accuracy here
would be 25%. In low, only silence and single speaker states compete. We achieve here
high accuracy results in silence detection, but lower on the speaker diarization. When
a single person is speaking there are silent parts, and therefore segments belonging to
a single speaker are classified as silence. In full, we can see the results of our proposed
framework. Silence detection has slightly lower precision, since silence is not modeled
as an independent speaker, but rather detected through the preprocessing step. On the
other hand, the speaker diarization has much higher accuracy, and this difference can
prove essential in ASR or automatic transcription tasks.

The overall DER of our system is 40% which lacks behind DER between 16.5%
and 25% presented in [5]. We believe that by using features more suitables for this
dataset and more elaborate speaker models, this accuracy can increase. What is really
interesting to notice is that systems which lower the dimensionality of the hidden state
space perform a DER of 60% which is very near the baseline system presented in [5].
However, full probabilistic treatment of all the possible multi-speakers situations, which
is the contribution of this work, improves significantly the results. If we combine this
treatment with state of the art voice models it can produce optimal output.

6.3 Multiple Speaker Parts

Finally, we would like to investigate is how well our model classifies the multi-speaker
parts. The results are visible in table 4 and follow the pre-processing results presented
in table 2. Thus, the parts with two or three speakers are detected with low accuracy,
while the four person parts are detected very accurately. The reason is that most of the
two person speaking results correspond to audio feedback given from one person when
another person speaks. Thus, they are short in duration and harder to detect.

In the third column of table 4, speakers detected, we see how many of the correctly
detected multi-speaker windows were assigned to the correct persons. In the case of
two speakers there are 6 difference system states combinations to choose from, in the
case of three speakers there are 4 states, while in the case that four speakers are detected
there is only one corresponding system state. This is an indication of the difficulty of
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Table 4. Accuracy in multiple speaker parts

Number of speakers Total windows Windows Speakers
in a window in data detected detected

2 5300 0.28 0.54
3 1472 0.22 0.92
4 2693 0.65 1.00

selecting the correct speakers and it is depicted in the speakers detected results, where
the accuracy increases as the number of states to choose from decreases.

7 Discussion and Conclusions

The results in section 6 present the potential of a hybrid approach to speaker diarization.
We do not claim that our model and parameter choices for each sub-task are optimal,
but it is our strong belief that the proposed method consists a sound probabilistic ap-
proach to the task of speaker diarization. The experimental results of section 6.1 show
that a discriminative approach can detect the number of active speakers reliably. Multi-
speaker parts, although rear in the stream, can be detected without jeopardizing high
accuracy in single-speaker and silence detections. The CRF framework allows much
space for tuning, and the use of more training data, coming straight from meeting au-
dio in combination with the use of problem-specific features can further improve the
results.

The results in section 6.2 show that the proposed hybrid model can rest the assump-
tions about a single speaker (and silence) at each time of the stream. These two classes
are detected with extremely high accuracy, while the multi-speaker parts are treated in
a uniform manner. Once more, more elaborate voice-models or voice-synthesis meth-
ods can improve the results further. Finally in section 6.3, we present the results on the
detected multi-speaker parts. We see that the audio modality is partially able to distin-
guish the active speakers. In order to improve results here, either the video modality or
a different voice-synthesis model should be used.
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Abstract. This paper presents our approach for automatic speech
recognition (ASR) of overlapping speech. Our system consists of two
principal components: a speech separation component and a feature est-
mation component. In the speech separation phase, we first estimated
the speaker’s position, and then the speaker location information is used
in a GSC-configured beamformer with a minimum mutual information
(MMI) criterion, followed by a Zelinski and binary-masking post-filter, to
separate the speech of different speakers. In the feature estimation phase,
the neural networks are trained to learn the mapping from the features
extracted from the pre-separated speech to those extracted from the
close-talking microphone speech signal. The outputs of the neural net-
works are then used to generate acoustic features, which are subsequently
used in acoustic model adaptation and system evaluation. The proposed
approach is evaluated through ASR experiments on the PASCAL Speech
Separation Challenge II (SSC2) corpus. We demonstrate that our sys-
tem provides large improvements in recognition accuracy compared with
a single distant microphone case and the performance of ASR system
can be significantly improved both through the use of MMI beamform-
ing and feature mapping approaches.

Keywords: neural network, speech separation, speech recognition, mi-
crophone arrays.

1 Introduction

A recent thrust of ASR research has focused on techniques to efficiently integrate
inputs from multiple distant microphones (multi-channel) for multiparty meetings
(where more than one speakers can be active at the same time). There are two com-
mon approaches to the separation of overlapping speech: blind source separation
(BSS) [1] and beamforming techniques. BSS exploits the assumption of statistical
independence or de-correlated components between the overlapped signals in or-
der to separate them, while beamforming provides an enhanced version of the input
speech based on the location of the speakers.The most fundamental and important
multi-channel method is the microphone array beamforming method, which con-
sists of enhancing signals coming fromaparticular locationbyfiltering andcombin-
ing the individual microphone signals. The simplest technique is delay-sum (DS)

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 110–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Neural Network Based Regression Approach 111

beamforming, which performs a summation of delayed microphone inputs, where
the delays are calculated to compensate for the differing time of arrival of the the
desired sound source at each of the microphones in the array.

Other sophisticated beamforming techniques, such as those proposed by Frost
[2] or the Generalized Sidelobe Canceller (GSC) [3], optimize the beamformer to
produce a spatial pattern with a dominant response for the location of interest.
The main limitation of these schemes is the issue of signal cancellation. In [4] a
superdirective beamformer and a further post-filtering have also been proposed
to suppress interfering speech. However, in the case of overlapping speech (with
coherent noise), the estimation of coherence matrix is far from trivial, and inac-
curate estimations may consequently introduce artifacts into the reconstructed
signal. Such disadvantages to conventional beamforming have spurred the devel-
opment of approaches such as the MMI beamforming criterion for beamforming
[13] which alleviates the signal cancellation problem by ensuring the orthogonal-
ity of desired and interfering signals.

It is important to note that the motivation behind the microphone array
techniques such as delay-sum beamforming is to enhance or separate the speech
signals, and as such they are not designed directly in the context of ASR. In
practice, it is common for meeting ASR that a well trained acoustic model is first
obtained using clean speech data (conversational telephone speech, broadcast
news), which is then adapted by using the meeting speech both from close talking
microphone (nearfield) as well as distant microphone speech after enhancing
the speech by delay-sum beamforming [5] or superdirective beamforming [7].
This approach has been shown to perform well. However, if one looks closely
at the ASR errors, a considerable amount of errors occur at the places where
speakers overlap (multiple speakers are active) [6]. Thus, improving the signal-
to-noise ratio (SNR) of the signal captured through distant microphones may not
necessarily be the best means of extracting features for robust ASR on distant
microphone data, particularly during periods of speaker overlap.

In our previous work [8], we have proposed to estimate the log spectral ener-
gies or Mel-frequency cepstral coefficients (MFCC) of clean speech based on a
mapping of delay-and-sum beamformed speech using neural networks. The map-
ping method could be viewed as a non-linear processing technique that aims to
approximate the clean speech through the fusion of the target speech and in-
terfering speech. If the qualities of the estimated target speech and interfering
speech are improved, then it is highly possible that the clean speech can be ap-
proximated with greater precision. Therefore, we propose to first separate the
target speech and the interfering speech using MMI beamforming techniques, fol-
lowed by a Zelinski and binary-masking based postfilter, and then to perform the
mapping method for estimating the MFCCs of the clean speech. Our studies on
the PASCAL SSC2 corpus [11] show the effectiveness of the proposed methods.

Although non-linear feature mapping using neural networks has been studied
for robust distant microphone ASR in the cepstral domain [17][18][19], the inputs
used for the estimation of the clean features in their algorithms are the noisy fea-
tures obtained from a single input from either distant microphone speech [17][18]
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or microphone array beamformed speech [19]. We distinguish our approach by
exploiting additional sources of information to improve the effectiveness of the
mapping. More specifically, we perform a mapping of features of target and in-
terfering sound sources, that have been firstly separated using state of the art
beamforming techniques.

This paper is organised as follows. Section 2 presents the system configura-
tion as a whole. Section 3 and Section 4 give a detailed description of speech
separation algorithms and non-linear feature estimation using neural networks,
respectively. Section 5 then presents and discusses experimental results, and Sec-
tion 6 gives conclusions and further work which may improve the performance
of the system.

2 System Configuration

The system consists of two principal components as shown in Figure 1: speech
separation followed by feature estimation. Initially we estimate the speaker’s
position with the speaker localization system. The speaker location information
is used in a GSC-configured beamformer with a minimum mutual informa-
tion (MMI) criterion to separate the speech of the two speakers, and the non-
correlated noise and the competing speech are canceled by means of a Zelinski
and binary-masking post-filter applied to the beamformer output. Then the fea-
tures of the pre-separated speech are extracted and the features of the clean
speech are estimated based on a non-linear regression. Finally the estimated
features are recognised by the ASR system for evaluation. In the following two
sections, the speech separation and feature estimation algorithms are described
in details.
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array
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speech separation

MMI

beamforming

feature estimation

feature
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non-linear

mapping
recognitionpost-filtering
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Fig. 1. Diagram of system configuration

3 Speech Separation Algorithms

3.1 Speaker Localization

The speaker tracking system we employed was based on [12]. New observations
are associated with an active target or with the clutter model through the calcu-
lation of posterior probalilities. After the association step, the position of each
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speaker can be updated through the modified Kalman filter. In addition to the
speeaker’s position, the system is also capable of determining when each speaker
is active.

3.2 MMI Beamforming

The speaker location information is used in a GSC-configured beamformer with
a minimum mutual information (MMI) criterion [13] to separate the speech of
different speakers. Assuming there are two such beamformers aimed at different
sources as shown in Figure 2, the output of the i-th beamformer for a given
subband can be expressed as,

Yi = (wq,i − Biwa,i)
H X (1)

where wq,i is the quiescent weight vector for the i-th source, Bi is the blocking ma-
trix, wa,i is the active weight vector, and X is the input subband snapshot vector.
In keeping with the GSC formalism, wq,i is chosen to preserve a signal from the
look direction and, at the same time, to suppress an interference [15, §6.3]. Bi is
chosen such that BH

i wq,i = 0. wa,i can be optimized by minimizing the mutual
information I(Y1, Y2) where Y1 and Y2 are the outputs of the two beamformers.
The optimization procedure of finding that wa,i under a minimum mutual infor-
mation (MMI) criterion is described in Kumatani et al. [13].

Minimizing a mutual information criterion yields a weight vector wa,i capa-
ble of canceling interference that leaks through the sidelobes without the sig-
nal cancellation problems encountered in conventional beamforming. The GSC
constraint solves the problems with source permutation and scaling ambiguity
typically encountered in conventional blind source separation algorithms [14].

wq,1
H

Bq,1
H wa,1

H

X(f)
Y(f)+

-
+ 1

wq,2
H

Bq,2
H wa,2

H

Y(f)+
-
+ 2

for the first source

for the second source

 MMI

Fig. 2. An MMI beamformer in GSC configuration
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3.3 Post-filtering

In order to further alleviate the non-correlated noise on different channels, a
fequency-domain Zelinski post-filter [20] is applied to the MMI-beamformed
speech, which can be estimated by

ĝi(f) =
2

M(M−1)�{
∑M−1

i

∑M
j=i+1 φxixj (f)}

1
M

∑M
i φxixi(f)

, (2)

Here �{·} and M denote the real operator and the number of channels, re-
spectively. φxixi and φxixj represent the auto- and cross-spectral densities of
the time-aligned inputs, respectively. Furthermore, a frequency-domain binary-
masking filter [21]

ĥi(f) =
{

1 if i = argmaxi′ |bi′(f)|, i′ = 1, ..., I
0 otherwise (3)

where bi(f) is Zelinsky filtered output (in this work I = 2), is used to eliminate
the signal from competing speakers. Finally the frequency-domain post-filtered
output Zi(f) is obtained by

Zi(f) = ĝi(f)ĥi(f)Yi(f). (4)

4 Feature Estimation

4.1 Feature Extraction

The frequency-domain outputs are reconstructed into time-domain speech sig-
nals. The speech signals are extracted with a 25-millisecond window and a 10-
millisecond frame shift. 26-channel Mel-filterbank analysis followed by the log
operation is subsequently applied. Finally 12 Mel-frequency cepstral coefficients
(MFCC) are obtained through the discrete cosine transformation (DCT) [9].

4.2 Non-linear Mapping

The idea of the mapping method is to approximate the MFCC extracted from
the speech signals captured by close-talking microphones through the non-linear
combination of the MFCC from pre-separated speech signals, as shown in Fig-
ure 3. Let s1(n) and s2(n) denote the MFCC vectors extracted from the two
pre-separated speech signals z1 and z2 at frame n, respectively. At the n-th
frame the feature vector of the clean speech from the first speaker, c1(n), can be
estimated using the neural network with one hidden layer:

ĉ1(n) = f(s1(n), s2(n))

=
P∑

p=1

(
wp · g (bp + wT

p1s1(n) + wT
p2s2(n)

))
+ b (5)
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Fig. 3. Diagram of the mapping-based speech recognition. CTM: close-talking micro-
phone.

where g(·) and P are the sigmoidal activation function and number of the neurons
employed in the hidden layer. The clean speech from the second speaker can be
estimated by swapping the inputs to the MLP, ie. ĉ2(n) = f(s2(n), s1(n)).

The parameters Θ = {wp, bp,wp1,wp2, b} are obtained by minimizing the
mean squared error:

E i =
N∑

n=1

[ci(n) − ĉi(n)]2, (6)

over the training examples. Here ci(n), i ∈ {1, . . . , I} denotes the MFCC vector
from the ith close talking microphone where in this work I = 2. We denote the
sample index as n coming from a total of N training examples. The optimal
parameters can be found through the error back-propagaton algorithm [16].

Note that the clean speech is required for finding the optimal parameters in
the neural network training, while in the test phase the clean speech is no longer
required, i.e., it is predicted from the input feature vectors from the enhanced
target speech and the interfering speech.

Note that before being fed into MLP, the two pre-separated speech inputs
must be kept in a consistent order. We firstly normalize both the pre-separated
speech and close-talking microphone speech, and then find each of the pre-
separated speech near to the corresponding close-talking microphone speech
based on the minimum distance between their spectral envelopes. In our map-
ping method, the inputs of neural networks s1 and s2 are 21-dimensional MFCC
vectors, while the dimensionality of the output ci is 13. These settings are based
on our previous studies [10].

5 Experiments and Results

We performed far-field automatic speech recognition experiments on the PASCAL
Speech Separation Challenge 2 (SSC2) [11] corpus. The data contain recordings
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Table 1. Recognition accuracies (as percentages) on the development data set

without adaptation with adaptation

Close-talking microphone 80.6 88.0
Lapel microphone 38.5 67.5
Single distant microphone 0.7 9.4

Separated speech 10.6 35.8
Mapping of separated speech 46.9 58.9
Mapping of lapel microphone speech 70.1 78.8

Table 2. Recognition accuracies (as percentages) on the evaluation data set

without adaptation with adaptation

Close-talking microphone 82.0 83.1
Lapel microphone 42.1 53.7
Single distant microphone 0.2 1.4

Separated speech 27.9 34.9
Mapping of separated speech 46.7 49.5
Mapping of lapel microphone speech 63.4 68.9

of two speakers simultaneously and the uttrances is from the 5,000 word vocab-
ulary Wall Street Journal (WSJ) task. The data were recorded with two circu-
lar, eight-channel microphone arrays. The diameter of each array was 20 cm,
and the sampling rate of the recordings was 16 kHz. The database also contains
speech recorded with close talking microphones (CTM). This is a challenging
task for source separation algorithms given that the room is reverberant and
some recordings include significant amounts of background noise.

Prior to beamforming, we first estimated the speaker’s position with the
speaker localization system described in [12]. In our beamforming system, the
Gaussian pdf is used. The active weights for each subband were nitialized to
zero. The system uses an HTK recognizer [9] with acoustic models trained on
the WSJCAM0 database from close talking microphones. MLLR based trans-
form is used to adapt the baseline acoustic models.

The corpus is divided into develop data set (178 utterances) and evaluation
data set (143 utterances). For the development data set, a leave-one-out cross-
validation approach is employed for the adaptation. For the evaluation data set,
the development data is used for the adaptation. In our feature mapping method,
104 utterances from the development dataset are used for the neural networking
training. The total number of training examples (frames) is 63,826.

Tables 1 and 2 show recognition accuracies (as percentages) for the develop-
ment and evaluation data sets for a number of different conditions. We can draw
following observations from the results:

– ASR performance drops significantly when going from close-talking micro-
phone, lapel microphone, and a single distant microphone. We also observe
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the expected results, which have also been earlier observed in the literature
[23][5], that model level adaptation improves performance.

– The speech separation system gives much higher recognition accuracies than
single distant microphone. However, these results are still much lower than
those of the lapel and close-talking microphones.

– By the mapping the MFCCs to those of close-talking microphone, the recog-
nition performance is further significantly increased. Note that without adap-
tation, the mapping system yields better recognition performance than the
lapel microphones, which clearly demonstrates the effectiveness of the feature
mapping process. With the mapping of separated speech, the recognition ac-
curacies are higher on the development dataset than on the evaluation data
set partly because the training data of neural networks is from one part of
development data set.

– When the feature mapping method is applied to the lapel microphones, the
recognition performance could also be increased.

6 Conclusions

We have presented our approach to automatically recognize simultaneous speech.
Our system consisted of two principal components: a speech separation compo-
nent which returns the separated speech as well as the locations of simultaneous
speakers, and a feature estimation component in which we proposed to further
enhance the feature vectors used for speech recognition. The technique achieves
better performance to the lapel microphones without acoustic model adaptation,
and shows large improvements in recognition accuracy compared with a single
distant microphone case. In this work, the mapping was learned between distant
microphones signal and clean speech signal. The future work in this direction is
to detect speaker overlap and non-overlap regions in multiparty meetings and
train/adapt the MLP directly using close-talking microphone speech as target
speech. Another issue is to address the scenarios where there are more than two
speakers speaking simultaneously.
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Abstract. Automatic speech recognition (ASR) systems, trained on
speech signals from close-talking microphones, generally fail in recog-
nizing far-field speech. In this paper, we present a Hilbert Envelope
based feature extraction technique to alleviate the artifacts introduced
by room reverberations. The proposed technique is based on modeling
temporal envelopes of the speech signal in narrow sub-bands using Fre-
quency Domain Linear Prediction (FDLP). ASR experiments on far-field
speech using the proposed FDLP features show significant performance
improvements when compared to other robust feature extraction tech-
niques (average relative improvement of 43% in word error rate).

Keywords: Hilbert Envelopes, Frequency Domain Linear Prediction,
Far-field Speech, Automatic Speech Recognition.

1 Introduction

When speech is recorded in rooms using far-field microphones, the speech signal
that reaches the microphone is superimposed with multiple reflected versions of
the original speech signal. These superpositions can be modeled by the convolu-
tion of the room impulse response, that accounts for individual reflection delays,
with the original speech signal, i.e.,

r(t) = s(t) ∗ h(t), (1)

where s(t), h(t) and r(t) denote the original speech signal, the room impulse
response and the reverberant speech respectively. The effect of reverberation
on the short-time Fourier transform (STFT) of the speech signal s(t) can be
represented as

R(t, ωk) = S(t, ωk)H(t, ωk), (2)
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where S(t, ωk) and R(t, ωk) are the STFT’s of the clean speech signal s(t) and
reverberant speech r(t) respectively and H(t, ωk) denotes the STFT of the room
impulse response h(t). For long analysis windows, this effect of reverberation can
be approximated as multiplicative in the frequency domain [1], i.e., H(t, ωk) is
not a function of time and Eq. (2) becomes

R(t, ωk) � S(t, ωk)H(ωk). (3)

In the techniques reported in [2,3], the effect of reverberation is compensated by
subtracting from log

(
R(t, ωk)

)
, its mean.

In this paper, we propose a technique that uses gain normalized temporal tra-
jectories of sub-band energies to compensate for the room reverberation artifacts.
Hilbert envelopes of sub-band signals are estimated by applying linear predic-
tion in the frequency domain [4] (Sec. 2). Unlike conventional approaches that
use mean compensation for reverberant speech recognition [2,3], the proposed
technique alleviates the reverberation artifacts present in long temporal en-
velopes of narrow frequency sub-bands(Sec. 3). The application of the proposed
compensation technique to the FDLP features significantly improves the recog-
nition accuracies for reverberant speech recorded using far-field microphones
(Sec. 4).
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Fig. 1. Linear Prediction in time and frequency domains for a portion of speech signal
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2 Frequency Domain Linear Prediction

Typically, Auto-Regressive (AR) models have been used in speech/audio appli-
cations for representing the envelope of the power spectrum of the signal (Time
Domain Linear Prediction (TDLP) [5]). This paper utilizes AR models for ob-
taining smoothed, minimum phase, parametric models for temporal rather than
spectral envelopes (Fig. 1). Since we apply the LP technique to exploit the re-
dundancies in the frequency domain, this approach is called Frequency Domain
Linear Prediction (FDLP) [4], [6]. For the FDLP technique, the squared mag-
nitude response of the all-pole filter approximates the Hilbert envelope of the
signal (in a manner similar to the approximation of the power spectrum of the
signal using TDLP [5]).

When speech is analyzed in narrow sub-bands using such long analysis win-
dows, each sub-band signal can be modeled in terms of the product of a slowly
varying, positive, envelope function and an instantaneous phase function [7].
In the case of far-field speech, each of these sub-band signals gets modified by
the room impulse response and can be approximated as the convolution of the
Hilbert envelope of the clean speech signal in that sub-band with that of the
room impulse function [7]. Since the Hilbert envelope and the spectral auto-
correlation function form Fourier transform pairs [4], normalizing the gain of
the sub-band FDLP envelopes suppresses the multiplicative effect present in the
spectral autocorrelation function of the reverberant speech.

3 Features Based on Frequency Domain Linear
Prediction

For the purpose of feature extraction, segments of the input speech signal (of
the order of 1000 ms) are decomposed into sub-bands, where FDLP is applied to
obtain a parametric model of the temporal envelope. The whole set of sub-band
temporal envelopes forms a two dimensional (time-frequency) representation of
the input signal energy. Each of these temporal envelopes is gain normalized to
suppress the reverberation artifacts. This two-dimensional representation is con-
volved with a rectangular window of duration 25 ms and resampled at a rate of
100 Hz (10 ms intervals, similar to the estimation of short term power spectrum
in conventional feature extraction techniques). These sub-sampled short-term

Analysis FDLP Temporal Energy

...
...

Short−term

Integration

...
...

ASRs(t) Sub−band
Features
Cepstral

Fig. 2. FDLP feature extraction for ASR
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spectral energies are converted to short-term cepstral features similar to the
PLP feature extraction technique [8]. In our experiments, we use 39 dimen-
sional cepstral features containing 13 cepstral coefficients along with the delta
and double-delta features. The block schematic for the FDLP feature extraction
technique is shown in Fig. 2.

4 Experiments and Results

We apply the proposed features and techniques to a connected word recognition
task on a digits corpus using the Aurora evaluation system [9] along with the
“complex” version of the back end proposed in [10]. We train models using a
training dataset used in [3] which contains of 8400 clean speech utterances, con-
sisting of 4200 male and 4200 female utterances downsampled to 8 kHz. In order
to study the effect of finer spectral resolution for the proposed compensation
technique, we first perform experiments using a test set of 3003 clean utterances
also used in [3]. We also create a test set for artificially reverberated speech by
convolving the clean test set with a room impulse response (with RT60 of 0.5
seconds and a direct-to-reverberant energy ratio of 0 dB [12]).

The first set of experiments compare the performance of FDLP based features
with the conventional features for clean and artificially reverberated speech. We
also study the effect of finer spectral resolution for the proposed compensation
technique by increasing the number of frequency sub-bands. Table 1 shows the
word accuracies for PLP features (PLP) and FDLP features when the number of
sub-bands is varied from 24 (FDLP-24) to 120 (FDLP-120). This is accomplished
by increasing the duration of the temporal analysis (from 1000 ms to 2400 ms)
for a constant width and overlap of the DCT windows. For all these experiments
we employ gain normalized temporal envelopes along with rectangular windows
in the DCT domain.

The next set of experiments are performed on the digits corpus recorded using
far-field microphones as part of the ICSI Meeting task [11]. The corpus consists
of four sets of 2790 utterances each. Each of these sets correspond to speech
recorded simultaneously using four different far-field microphones [11]. Each of

Table 1. Word Accuracies (%) for PLP and FDLP features for clean and reverberant
speech

Feature Set Clean Speech Revb. Speech

PLP 99.68 80.12
FDLP-24 99.18 89.49
FDLP-33 99.13 91.86
FDLP-67 99.09 92.93
FDLP-76 99.16 93.60
FDLP-96 99.07 94.79
FDLP-108 99.03 94.63
FDLP-120 98.91 94.55
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Table 2. Word Accuracies (%) using different feature extraction techniques on far-field
microphone speech

Channel PLP CMS LDMN LTLSS FDLP

Channel E 68.1 71.2 73.2 74.0 85.2
Channel F 75.5 77.4 80.4 81.0 88.1
Channel 6 74.1 78.3 80.9 81.1 89.6
Channel 7 58.6 67.6 70.5 71.0 84.9

these sets contain 9169 digits similar to those found in TIDIGITS corpus. The
number of sub-bands for the FDLP features is fixed at 96 along with a tem-
poral analysis window of duration 2000 ms. We use the HMM models trained
with the clean speech from earlier experiments. The results for the proposed
FDLP technique are compared with those obtained for several other robust fea-
ture extraction techniques proposed for reverberant ASR namely Cepstral Mean
Subtraction (CMS) [13], Long Term Log Spectral Subtraction (LTLSS) [3] and
Log-DFT Mean Normalization (LDMN) [2]. In our LTLSS experiments, we cal-
culated the means independently for each individual utterance (which differs
from the approach of grouping multiple utterances for the same speaker de-
scribed in [3]) using a shorter analysis window of 32 ms, with a shift of 8 ms.
Table 2 shows the word accuracies for the different feature extraction techniques
using the far-field test data, where we obtain a relative error improvement of
about 43% over the best other feature extraction technique.

5 Conclusions

Unlike many single microphone based far-field speech recognition approaches,
the proposed technique does not normalize speech signals using long term mean
subtraction in spectral domain. We show that the effect of reverberation is re-
duced when features are extracted from gain normalized temporal envelopes of
long duration in narrow sub-bands. FDLP provides an efficient way to suppress
the reverberation artifacts and hence, FDLP features extracted in reverberant
environments provide significant improvements over other robust feature extrac-
tion techniques.
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Abstract. Audiovisual text-to-speech systems convert a written text
into an audiovisual speech signal. Lately much interest goes out to data-
driven 2D photorealistic synthesis, where the system uses a database
of pre-recorded auditory and visual speech data to construct the tar-
get output signal. In this paper we propose a synthesis technique that
creates both the target auditory and the target visual speech by using a
same audiovisual database. To achieve this, the well-known unit selection
synthesis technique is extended to work with multimodal segments con-
taining original combinations of audio and video. This strategy results in
a multimodal output signal that displays a high level of audiovisual cor-
relation, which is crucial to achieve a natural perception of the synthetic
speech signal.

1 Introduction

1.1 Text-to-Speech Synthesis

A classical text-to-speech (TTS) system is an application that converts a written
text into an auditory speech signal. In general, the TTS synthesis procedure can
be split-up in two main parts. In a first stage the target text is analyzed by a lin-
guistic front-end which converts it into a sequence of phonetic tokens and the ac-
companying prosodic information like timing, pitch and stress parameters. Then,
in a second step, this information is used by the synthesis module of the TTS sys-
tem to construct the actual physical waveform. In the early years, model based
synthesis was the common technique to create the target speech. This means that
the properties of the output waveform are calculated by using pre-defined rules
based on measurements on natural speech. For instance, formant-based synthe-
sizers create the synthetic speech by designing a time-varying spectral envelope
that mimics the formants found in natural speech. Although these model-based
synthesizers are able to produce an intelligible speech signal, their output signals
lack a natural timbre to successfully mimic human speech. This led to the de-
velopment of a different synthesis methodology: data driven synthesizers. These
systems construct the target speech by selecting and concatenating appropriate
segments from a database with natural pre-recorded speech. If the system can
select a good set of segments, the output speech will be perceived as (more or
less) natural and it will display a realistic timbre. Currently this data-driven
technique is the most common strategy used by high-end TTS systems, where
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the segments are selected from a large database containing continuous natural
speech signals [12].

1.2 Audiovisual Text-to-Speech Synthesis

In human to human speech communication, not only the audio but also the
visual mode of speech is important. Accordingly, when thinking of a program
that converts a written text into a speech signal, ideally this system should cre-
ate together with the audio a synthetic visual track containing a person that
speaks the target text. Such systems are referred to as audiovisual TTS systems.
To construct this visual speech signal, the same two major approaches found in
classical auditory TTS synthesis exist: model-based and data-based synthesis [1].
Model-based visual speech synthesizers create the visual signal by rendering a
3D model of a human head. To simulate the articulator movements, pre-defined
rules are used to alter the polygons of the model in accordance with the target
phonetic sequence. Unfortunately, 3D visual speech synthesis systems are unable
to produce a completely photorealistic visual speech signal, even when sophisti-
cated models and texture-mapping techniques are used. Similar to the evolution
in auditory TTS systems, in recent years more and more interest goes out to
data-driven approaches to create a synthetic visual speech signal that is - in
the most ideal case - indistinguishable from a natural speech signal. Data-driven
audiovisual TTS systems construct the target photorealistic video signal using
visual speech data selected from a database containing recordings of natural vi-
sual speech. The major downside of data-driven synthesis, both in the audio and
in the visual domain, is the fact that the freedom of output generation is limited
by the nature and the amount of the pre-recorded data in the database. For
instance, the large majority of 2D photorealistic visual speech synthesis systems
will only produce a frontal image of the talking head, since their databases con-
sist of frontal recordings only. This means that the system can not be used in, for
example, 3D scenery creation in an animated movie. Nevertheless, a 2D frontal
synthesis can be applied in numerous practical cases due to its similarity with
regular 2D television and video. Research has shown that humans tend to better
comprehend a speech signal if they can actually see the talking person’s face and
mouth movements [18]. Furthermore, people feel more positive and confident if
they can see the person that is talking to them. This is an important issue when
we think about creating synthetic speech in the scope of machine-user commu-
nication. When a TTS system is used to make a computer system pronounce a
certain text toward a user, the addition of a visual signal displaying a person
speaking this text will indeed increase both the intelligibility and the naturalness
of the communication. 2D audiovisual TTS systems are also very useful for edu-
cational applications. For instance, small children need a visual stimulus on top
of the auditory speech even more than adults do, as it will make them feel more
connected with the machine and helps in drawing their attention. Other possible
applications can be found in the infotainment sector, where these photorealis-
tic speech synthesizers can be used to create a synthetic news anchor or a virtual
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reporter which can, for instance, be employed to create up-to-date audiovisual
reports to broadcast via the Internet.

In the remainder of this paper we will focus on data-driven 2D audiovisual
TTS synthesis. In the next section we give a general description of this data-
driven approach, together with a short overview of the previous work found in
the literature. Next, in section 3 we introduce our technique for tackling the
synthesis question and we describe our audiovisual text-to-speech system. Our
results are discussed in section 4 and section 5 describes how this research can
be extended in the future.

2 2D Photorealistic Audiovisual Speech Synthesis

2.1 Database Preparation

Audiovisual data-driven speech synthesis is performed by gathering and combin-
ing data from a database. In a first step, an offline recording of the audiovisual
database is needed. Note that from the recordings of one single speaker, only one
synthetic speaker can be created. This implies that for every virtual speaker we
want to create, a new database has to be recorded. In addition, the positioning
of the camera determines the possible views of the synthetic head that can be
created during synthesis. Another point that needs to be considered is the fact
that every head movement of the recorded speaker causes his/her facial parts
like the nose, the eyes and the lips to move from their location (when seen from
the fixed camera position). So, if we record data including head movements, later
on processing will be needed to cope with these displacements. In general, it is
not necessary that the audio data is recorded together with the video database,
even more: it is not obliged that the same speaker is used. Nevertheless, since
the audio and the video mode of an audiovisual speech signal show a great deal
of correlation, recording both modes together can have a lot of benefits as will be
explained in more detail later. After recording, the database must be analyzed
to construct meta-data that can be applied during synthesis. Since this is still
an offline step, much effort should be spent on an accurate examination of the
speech data because the quality of the synthesis will be for a great deal deter-
mined by the nature and the quality of this meta-data. First of all, the speech
must be phonetically annotated: the audio signal is segmented in series of con-
secutive phonemes and the visual signal is segmented in consecutive visemes.
In addition, extra properties in both modes are annotated to ensure that the
most appropriate segments can be selected during synthesis. Examples of such
properties are given in section 3.3.

2.2 Speech Synthesis

To create a new audiovisual speech signal, the synthesizer must select and apply
the appropriate data from the database. To create the synthetic audio track, con-
catenative auditory speech synthesis is the most commonly applied technique. A
general description of this strategy is given in section 3.3 and can be found for
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instance in [12]. In order to create the synthetic video track, the system has to
cope with several requirements. First of all, the synthetic mouth and face move-
ments have to represent the correct phonetic sequence. Note that there is no
one-on-one mapping between phonemes and their visual counterpart (visemes):
different phonemes can be represented by the same viseme (so-called viseme-
classes [2]). On the other hand, due to a strong visual co-articulation effect,
several possible visual representations for a same phoneme exist. A second re-
quirement is that the synthetic visual articulators (e.g.: lips, tongue, jaw) should
move in a natural manner. Finally, the system must assure that there is a good
coherence between the output audio and video mode. In the following section
we will briefly describe some techniques that are mentioned in the literature for
tackling this synthesis question.

2.3 Previous Work

A first important remark that should be made when we inspect the literature on
2D photorealistic speech synthesis is that most of these systems synthesize the
audio and the video mode separately from each other. They first acquire the tar-
get audio from an external auditory text-to-speech system or from a recording of
natural speech and then, afterwards, this audio track and its phonetic transcript
are used as input to create the visual mode of the synthetic speech. A second
observation is that the systems found in the literature only focus on creating
the appropriate mouth movements, after which they complete the synthesis by
merging this mouth together with a background face. In the remainder of this
paper, although sometimes not explicitly mentioned, we discuss techniques used
to synthesize only the mouth-area of the visual speech signal.

In an early system designed by Bregler et al. [3], the visual database is first
segmented in triphones using the phonetic annotation of the audio track. The
system creates a series of output frames by selecting the most appropriate tri-
phones from the database based on two criteria. The first one expresses how well
the phonemes of the triphone chunk match the target phonemes: two phonemes
from a same viseme-class contribute zero penalty. The second criterion expresses
how closely the mouth contours in the boundary frames of the triphone chunk
match those in adjacent output frames. Other systems described by Ezzat et al.
[7] and Goyal et al. [10] are based on the idea that the relation between phonemes
and visemes can be simplified as a many-to-one relation. First they create a
database of still images, one for each viseme-class. For each phoneme in the
output audio, its representative still image is added to the output video track.
To accomplish a smooth transition between these keyframes, image warping is
used to create the appropriate intermediate frames. Much research on 2D speech
synthesis was conducted by Cosatto et al. [4][5][6]. In the first versions of their
system, a map of different mouth occurrences is defined. The different entries
of this map are determined by visual properties like the width and the height
of the mouth-opening. For each entry, several frames are pre-selected from the
database. To synthesize a new visual speech sequence, a trajectory through the
map can be calculated by first training the system with some sample speech
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data. Then these trajectories are sampled, where the system selects from the
target map entries those frames that are most suitable for concatenation. Over
the years, their synthesis method evolved more and more towards a real unit se-
lection synthesis, similar to the unit selection techniques used in auditory text-
to-speech synthesis. In their approach, the new video track is constructed by
selecting and concatenating segments consisting of a variable amount of original
frames. This selection is based on how well the fragment matches the ideal target
segment and how good it can be concatenated with the other selected chunks.

Ezzat et al. [8] and Theobald et al. [19] worked on model-based 2D photoreal-
istic synthesis. Their systems first define a model that represents the frames of
the visual speech corpus based on shape parameters (e.g.: optical flows or land-
marks) and appearance parameters (e.g.: principal components analysis (PCA)
coefficients). Such a model can be an analysis tool, since every new frame can
be represented as a combination of these shape and appearance parameters. By
using such models, the system can generate new unseen frames as every new set
of parameters defines a new image. To create the target visual speech signal,
trajectories through the parameter space are calculated in accordance with the
target phoneme sequence. Based on these trajectories, the system is then able
to create a new series of appropriate video frames.

3 The Proposed Audiovisual Speech Synthesis System

3.1 General Approach

By developing a Dutch (Flemish) audiovisual speech synthesizer, we wish to in-
vestigate how the naturalness of 2D audiovisual TTS synthesis can be further
optimized. As explained in section 2.2, the goal in audiovisual speech synthe-
sis is not only to create a visual speech signal that looks fluent and natural, it
is also important to reach a high level of multimodal coherence in the output.
Since humans are trained to capture and process inputs from both modes of an
audiovisual speech input simultaneously, they are sensitive to unnatural com-
binations of auditory and visual speech. Consequently, the major drawback of
the systems described in section 2.3 resides in the fact that they only produce a
video signal. Afterwards this signal is merged with an audio track coming from
a completely different source (from a different speaker) in order to create the
final multimodal output. Although this new video track can appear very natural
and smooth, users tend to observe that the auditory speech they hear actually
could not have been produced by the facial animation they see. This is often
caused by the fact that the visual synthesizer creates a ’safe’ representation of
the viseme sequence, based on the most common visual representation(s) of the
input phoneme sequence. In practice, however, the output audio speech track
does include some more extreme phoneme instances (e.g.: badly pronounced
ones), which do need a corresponding visual counterpart in the accompanying
video track.

In this study, our main goal is to synthesize the output by concatenating au-
diovisual chunks, selected from an audiovisual database. This means that from
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the continuous speech in the database, the system will select an appropriate
set of multimodal segments from which both the audio and the video track
will be used to construct the output speech. This strategy has the advantage
that the final output will consist of original combinations of auditory and vi-
sual speech fragments, which will maximize the audiovisual correlation in this
synthetic signal. This will lead to a more natural perception of the combination
of synthetic auditory and synthetic visual speech and it will obviously mini-
mize quality degradations caused by audiovisual co-articulation effects (e.g.: the
McGurk effect [16]). In addition, a careful selection and concatenation of the
selected audiovisual segments will result in a new multimodal speech signal that
exhibits smoothness and naturalness in both its audio and its video mode.

3.2 Database Preparation

We recorded a preliminary small audiovisual speech corpus containing 53 sen-
tences from weather forecasts. It is obvious that this limited amount of data
will have a negative influence on the overall synthesis quality. Nevertheless, by
synthesizing sentences from this limited domain, significant observations are pos-
sible. Also, a valorization of the synthesis techniques for the open domain can be
attained by expanding the database. The audiovisual speech was recorded with
the video sampled at 25 frames per second and the audio sampled at 44100 Hz.
We assured that the asynchrony between both modes is negligible small. After
recording, the data was analyzed off-line to create the meta-data for synthesis.
For the audio track, we computed energy, pitch and spectral properties, together
with pitch mark information. The video track was processed to obtain for each
frame a set of landmark points, which indicate the location of the facial parts
(see figure 1). Additionally, we subtracted from each frame the mouth region
and calculated its PCA coefficients. Finally the frames were further processed
to detect the amount of visible teeth and the dark area inside the open mouth.

3.3 Segment Selection

Our audiovisual synthesis system is designed as an extension of our unit selection
auditory TTS system [14], which uses a Viterbi search on cost functions to select
the appropriate segments from the database. The total cost (Ctotal) of selecting
a particular audiovisual segment includes target cost functions (Ctarget) that in-
dicate how well this segment matches the target speech, and join cost functions
(Cjoin) which indicate how well two consecutive segments can be concatenated
without the creation of disturbing artifacts. To use with our multimodal unit
selection technique, these cost functions are needed for the audio track as well
as for the video track, since the selection of a particular audiovisual unit will
depend on the properties of both these modes. As primary target cost we used
the phonetic correctness of the segment. Note that, contrary to the systems de-
scribed in section 2.3, no viseme-classes are used since the auditory synthesis
requires an exact phonetic match. Since the co-articulation effect - the fact that
the visual properties of a certain phoneme strongly depend on the nature of the
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surrounding phonemes and visemes - is very pronounced for the visual mode,
looking for those segments that have a phonetic context matching as well as
possible the target speech is crucial. For this reason, the target cost function
is further refined to reward a match in the extended phonetic context (see also
[14]). To calculate the join cost between two segments, both auditory (CAjoin)
and visual (CVjoin) properties are used. For the audio mode, we measure the
difference in energy, pitch and mel-scale cepstra. For the visual domain we de-
fine an essential cost function that is calculated after aligning the two segments,
by measuring the differences between the landmark positions in frames at the
border of selected neighboring segments. By using this cost we ensure smooth
concatenations in the video mode, since it rewards the selection of mouth in-
stances that are similar in shape. Furthermore, other visual cost functions are
needed to select mouths with similar appearances in order to avoid the creation
of artifacts at the join positions. This is achieved by comparing properties like
the amount of visible teeth and the amount of mouth opening present in the
frames. Finally, we implemented a cost function based on the PCA coefficients
of the mouth regions, which can be used to measure shape as well as appearance
differences.
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∑
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By adjusting the weights w, an optimal trade-off between all the different contri-
butions to the total cost can be found. At this point in time, the weights in our
system are experimentally optimized, although in a later stage of this research,
an automatic training of these parameters might be used to further optimize the
selection procedure.

3.4 Concatenation and Synthesis

The selected audiovisual segments have to be joined together to create the fi-
nal output signal. The joining of two fragments that both contain an original
combination of audio and video requires two concatenation actions - one for the
audio and one for the video track. The two segments that have to be joined are
overlapped by an extend that optimizes the concatenation. This join position is
first roughly determined by the phonetic transcript of the audio track: former
research on auditory speech synthesis has shown that the most optimal join posi-
tion is the most stable part of the boundary phonemes of the two segments. Each
join can be further optimized by fine-tuning this point until the total join cost
for this particular join is minimal. In order to successfully transfer the inherent
audiovisual coherence from the two audiovisual segments to the joined speech
fragment, the location of the join in the video track is kept as close as possible



132 W. Mattheyses et al.

to the location of the join in the audio track (see also further in this section).
Joining the two multimodal segments with a certain overlap implies the need
for some sort of advanced crossfade technique for both the audio and the video
track, as will be explained next.

Audio Concatenation. When two voiced speech waveforms are joined, we have
to make sure that the resulting signal shows a continuous periodicity. Therefore,
we designed a join technique based on pitch mark information that tackles the
problem by a pitch-synchronous window/overlap technique. For more details the
reader is referred to [15].

Video Concatenation. When the video tracks of the two audiovisual segments
are played consecutively, we will have to cope with the fact that the transition
from the last frame(s) of the first video sequence to the first frame(s) of the
second sequence can be too abrupt and unnatural. Therefore, to smooth the
visual concatenation, we replace the frames at the end and at the beginning of the
first and second video segment, respectively, by a sequence of new intermediate
frames. Image morphing is a widely used technique for creating a transformation
between two digital images. It consists of a combination of a stepwise image warp
and a stepwise cross-dissolve. To perform an image morph, the correspondence
between the two input images has to be established by means of pairs of feature
primitives. A common approach is to define a mesh as feature primitive for both
inputs - so-called mesh warping [20]. A careful definition of these meshes results
in a high quality metamorphosis, however, this is not always straightforward and
often very time-consuming. Fortunately, when we apply this morphing technique
to smooth the visual concatenations in our speech synthesizer, every image given
as input to the morph algorithm will be a frame from the speech database and
will thus be quite similar to other morph inputs. This means that we only need
a strategy to construct the appropriate mesh for a typical frame in the database.
To achieve this, we define for each frame a morph-mesh based on the landmarks
determined by tracking the facial parts through the database. By using this data
as input for the image metamorphosis algorithm, we managed to generate for
every concatenation the appropriate new frames that realize the transition of the
mouth region from the first video fragment toward the second one. An example
of a morph input and the resulting output frames are showed in figure 1.

To construct a full-face output signal, the same technique that can be found in
the literature is used (see section 2.3): we first construct the appropriate mouth
region signal, which is afterwards merged with a background video showing the
other facial parts. Note that some little head movements in the background video
have to be allowed, since a completely static head lacks any naturalness. Cur-
rently, we only cope with small translations of the background face which we
mimic by carefully aligning the new mouth sequence with the background video.

Audiovisual Synchronization. To successfully transfer the original multi-
modal coherence from the two selected segments to the concatenated speech, it
is important to retain the audiovisual synchronization. In [11], it is concluded
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Fig. 1. Example of the smoothing technique. The two newly created frames shown in
the middle of the lower panel will replace the segments’ original boundary frames in
order ensure the continuity during the transition from the left frame to the right one.
A detail of the landmark data and morph inputs is shown on top.

that humans are very sensitive to a lead of the audio track in front of the video
track in audiovisual speech perception. On the other hand, there is quite a toler-
ance on the lead of the video signal. In our audiovisual synthesis we exploit this
property to cope with the fact that the audio sample rate (44100 Hz) is much
higher than the video sample rate (25 Hz). Consequently, the audio component
of the selected segments can be joined at exactly the optimal join position (see
above), but not so in the video mode whose accuracy is much lower. Therefore,
in order to optimize the audiovisual synchrony in the multimodal output signal,
at each concatenation, we ensure that the original combinations of auditory and
visual speech are desynchronized by maximum half of a frame (20 ms), where a
video lead is preferred.

Our system uses the Nextens [13] Dutch linguistic front-end to convert the
input text into its phonetic transcript and accompanying prosody information.
After concatenation, the sequence of joined segments does not necessarily contain
this target prosody. Although we use pitch levels as one of the selection criteria,
the concatenated speech will sometimes need extra tweaking to attain the desired
output prosody. Therefore, the audio track is processed by a PSOLA algorithm
[17] to alter the pitch and the timing of the speech waveform. In order to do so,
a warping path that defines how the timing of the original concatenated signal
is mapped on the target timing is constructed. This path is then used to also
time-scale the video signal. This visual time-scaling is accomplished by removing
or duplicating appropriate frames in such a way that the audiovisual asynchrony
remains within the above-mentioned constraints. 1

1 We also experimented with more advanced visual time-scaling techniques (e.g.: in-
terpolation by image warping algorithms). However, testing showed that this extra
computational workload delivers only very little or even zero gain in signal quality.
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Fig. 2. From left to right, top to bottom the synthesized mouth sequence for the Dutch
phoneme sequence ’...O p n e r s l A x s t Ei...’ (coming from the sentence ’De kans
op neerslag stijgt’ ) is shown. Edged frames are newly created ones to smooth the
concatenations; the other ones are copied directly from the database.

4 General Discussion

Our audiovisual text-to-speech system aims to improve current state-of-the-art
audiovisual speech synthesis techniques by increasing the multimodal coher-
ence in the output speech. To achieve this, we apply original combinations of
sound/video for concatenation. To select these multimodal fragments, the unit
selection paradigm is well-suited since it has been shown to be the most suitable
current technique for auditory speech synthesis. Moreover, in [3] as well as in
[6] this strategy was successfully applied for the synthesis of the video mode. In
contrast with [9], we spent much effort in sophisticating the selection and con-
catenation process of the synthesizer. Unfortunately, our current speech database
is too small to systematically compare and evaluate the overall performance of
the system. Nevertheless, preliminary synthesized results from within the lim-
ited domain of the database show that an experimentally optimized combination
of auditory and visual costs does result in the selection of suitable audiovisual
fragments. Furthermore, the two modes of these segments are successfully joined
by the proposed multimodal concatenation procedure. An even more important
conclusion that can be drawn from the obtained results is that the concatenation
of original combinations of audio and video does result in a very high audiovisual
coherence in the output signal. This is for instance very noticeable at synthe-
sis points where the selected segments are not optimal. When this results in
some irregularity (non-typical output) in the audio track, the same behavior is
noticed in the video track (and vice-versa). More importantly, also at regular
synthesis instances the resulting high audiovisual coherence improves the per-
ception of the synthetic multimodal speech, since observers truly believe that the
person displayed in the visual mode could indeed have been the source of the
presented auditory speech signal. Examples of synthesized sentences can be found
at http://www.etro.vub.ac.be/Research/DSSP/Projects/AVTTS/demo AVTTS.htm.
Note that, in order to obtain these results, no manual corrections on the analysis
nor on the synthesis were performed.
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5 Future Work

To further enhance the output quality, the audiovisual database will be enlarged.
As found in previous studies on classical auditory text-to-speech systems, pro-
viding more initial data to the selection algorithms results in the selection of
more optimal units, at the expense of a larger data footprint and a higher com-
puting load. Since audiovisual speech recordings require a lot of data, we expect
to find an optimum in this trade-off at about two hours of speech recordings2.
We will experimentally search for this optimum by conducting listening-tests
using databases of variable sizes. Future research will also have to point out new
techniques to further optimize the segment selection strategy itself. A first pos-
sible enhancement is to tweak the influences of the different cost functions on
the total selection cost (e.g.: the importance of visual costs over auditory costs).
Another option is to introduce a certain amount of audiovisual asynchrony in
order to optimize the concatenations of the segments. Indeed, for each selected
audiovisual fragment we could vary the audio and the video join positions inde-
pendently in such a way that the concatenation can be optimized in both modes
separately. Further, aside from the selection of the appropriate mouth segments,
a more natural output can be achieved by also altering the movements of the
other facial parts in accordance with the input text. Hurdles that will have to
be taken to successfully achieve this are the definition of the rules to generate
a target visual prosody and the search for a strategy to merge all the different
synthesized facial parts into one final, realistic representation of the face.
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Abstract. Laughter is a highly variable signal, which can be caused by
a spectrum of emotions. This makes the automatic detection of laugh-
ter a challenging, but interesting task. We perform automatic laughter
detection using audio-visual data from the AMI Meeting Corpus. Audio-
visual laughter detection is performed by fusing the results of separate
audio and video classifiers on the decision level. This results in laughter
detection with a significantly higher AUC-ROC1 than single-modality
classification.

1 Introduction

Laughter is omnipresent in human vocal communication, and conveys cues for
emotional states. This makes automatic laughter detection an interesting re-
search subject. Earlier work on laughter detection has mainly focused on laugh-
ter detection in audio. In this work, we will add the video modality, and perform
audio-visual laughter detection. We will construct classifiers for the audio and
video modalities independently, and test if fusion of these modalities can improve
the performance of automatic laughter detection.

In the next section we will describe some previous research on laughter de-
tection and fusion of audio-visual data. Then we will outline the experiment,
present our results and end with conclusions and suggestions for future work.

2 Previous Work

2.1 Laughter Detection in Audio

Automatic laughter detection has been studied several times in the context of
meetings, for audio indexing and to detect affective states. We will describe a
number of studies on automatic laughter detection in audio, and summarize
some characteristics of these studies.
1 Area under curve - receiver operating characteristic.

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 137–148, 2008.
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Campbell et al. developed a system to classify a laugh in different categories
[3]. They constructed a corpus from daily speech containing four affective classes
of laughter: a hearty laugh, an amused laugh, a satirical laugh and a social laugh.
A training set of 3000 hand-labeled laughs was used to train Hidden Markov
Models (HMMs). The HMMs recognized the affective class correctly in 75% of
the test cases. Automatic laughter detection is frequently studied in the context
of meetings. Kennedy and Ellis [13] detected multiple laughing participants in
the ICSI Meeting Corpus. Using a Support Vector Machine (SVM) on one second
windows of Mel-Frequency Cepstrum Coefficients (MFCCs) features, an equal
error rate (EER) of 13% was obtained. Truong and Van Leeuwen [21] used a clean
subset of the ICSI Meeting Corpus to train Gaussian Mixture Model (GMM) and
SVM classifiers. Instances containing speech and inaudible laughs were removed
to form the clean subset. The classifiers were trained on spectral features, pitch
& energy, pitch & voicing features and modulation-spectrum features. Usually,
the SVM classifiers performed better than the GMM classifiers. Fusion based on
the output of the GMM and SVM classifiers increases the discriminative power,
as does fusion between classifiers based on spectral features and classifiers based
on prosodic information.

When we compare the results of these studies, GMMs and SVMs seem to
be used most for automatic laughter recognition. Spectral features seem to out-
perform prosodic features, and although different corpora are used, an EER of
12–13% seems to be usual.

2.2 Audio-Visual Fusion

Most work on audio-visual fusion has focused on the detection of emotions
[2, 9, 10, 25, 27]. Some other studies perform cry detection [15], movie clas-
sification [24], tracking [1], speech recognition [6] and laughter detection [12].
These studies all try to exploit the complementary nature of audio-visual data.
Decision-level fusion is usually performed using the product, or a (weighted) sum
of the predictions of single-modality classifiers. As an alternative to decision-level
fusion, sometimes feature-level fusion is used where the features are merged be-
fore classification. An overview of relevant work on audio-visual fusion can be
found in Table 1.

Audio-visual laughter detection has already been performed by Ito et al. [12]
on a database with Japanese, English and Chinese subjects. The lip lengths, the
lip angles and the mean intensities of the cheek areas were used as features for
the video modality. Frame level classification of the video features was performed
using a perceptron, resulting in a recall of 71%, and a precision of 52%. Laugh-
ter sound detection was performed on MFCC and delta-MFCC features, using
two GMMs, one for laughter, and one for other sounds. A recall of 96% and a
precision of 60% was obtained using 16 Gaussian mixtures. Decision-level fusion
was performed with manually designed rules, resulting in a recall of 71% and a
precision of 74%. Ito et al. do not report if this increase is statistically significant.

Recently, Petridis and Pantic performed audio-visual discrimination between
laughter and speech [17]. The AMI Meeting database was used to create a corpus
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Table 1. Audio-visual fusion. The last column contains the performance using different
modalities and fusion techniques; A indicates audio, V indicates video, FF indicates
feature-level fusion, and DF indicates decision-level fusion. The performance is mea-
sured in classification accuracy, except for [12, 17, 18] for which we present the F1

measure instead of recall - precision pairs.

Study Dataset Performance

Petridis and Pantic [17]
(2008)

AMI, spontaneous, laugh-
ter

A: F1 = 0.64, V: F1 =
0.80, DF: F1 = 0.82,
FF: F1 = 0.81

Petridis and Pantic [18]
(2008)

AMI, spontaneous, laugh-
ter

A: F1 = 0.69, V: F1 =
0.80, DF: F1 = 0.88

Zeng et al. [26] (2007) AAI, spontanous, 2 emo-
tions

A: 70%, V: 86% DF: 90%

Hoch et al. [10] (2005) Posed, 3 emotions A: 82%, V: 67%, DF: 87%
Ito et al. [12] (2005) Spontaneous, laughter A: F1 = 0.72, V: F1 =

0.60, DF: F1 = 0.72
Wang and Guan [23]
(2005)

Posed, 6 emotions A: 66%, V: 49%, FF: 82%

Busso et al. [2] (2004) Posed, 4 emotions A: 71%, V: 85%, FF: 89%,
DF: 89%

Go et al. [8] (2003) Unknown, 6 emotions A: 93, V: 93%, DF: 97%
Dupont and Luettin [6]
(2000)

M2VTS, spontaneous, 10
words

A: 52% V: 60%, FF: 70%,
MF: 80%, DF: 82%

with 40 laughter segments and 56 speech segments. These laughter segments con-
tain a clearly audible harmonic laugh, and do not contain speech. Video features
were extracted by tracking 20 facial points, and transformed to uncorrelated
features using a PCA similar to our approach in [19]. A few relevant principal
components were used to calculate distance based features. Perceptual Linear
Prediction coding (PLP) was used to obtain audio-features. For classification,
AdaBoost was used to select a feature-subset, on which an Artificial Neural Net-
work classifier was trained. Both decision-level and feature-level fusion of the
audio and video modality seem to improve on the performance of the video-
classifier slightly (see Table 1) but it remains to be seen on which level fusion
works best. In a follow-up study Petridis and Pantic use the same dataset to
perform decision-level fusion based on different configurations of single-modality
classifiers, such as spectral and pitch & energy based audio-classifiers, and face-
component and head-component based video-classifiers [18]. The best combina-
tion was formed by the combination of the spectral audio-classifier and both the
head and face modality for video.

From Table 1 it appears that fusion of the audio and video modality boosts
the classification performance generally with a few percent. However, most work
does not report the significance of this gain in performance. The fusion of audio
and video modalities seems to work best when the individual modalities both
have a low performance, for example due to noise in the audio-visual speech
recognition of Dupont [6]. When single classifiers have a high performance, the
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performance gain obtained by fusion of the modalities is low, and sometimes
fusion even degrades the performance, as observed in the work of Gunes and
Piccardi [9].

3 Methodology

We perform fusion on the decision-level where the audio and video modalities
are classified separately. When the classifiers for both modalities have classified
the instance, their results are used to make a final multi-modal prediction. We
have chosen to evaluate decision-level fusion because it allows us to use different
classifiers for each of the two modalities.

3.1 Dataset

Previous work on laughter detection often used the ICSI Meeting Corpus. Be-
cause this corpus does not provide video recordings, we have created a dataset
based on the AMI Meeting Corpus. The AMI Meeting Corpus consists of 100
hours of meeting recordings, stored in different signals that are synchronized to
a common time line. The meetings are recorded in English, mostly spoken by
non-native speakers. For each meeting, there are multiple audio and video record-
ings. We used seven unscripted meetings recorded in the IDIAP-room (IB4001,
IB4002, IB4003, IB4004, IB4005, IB4010, IB4011) as these meetings contain a
fair amount of spontaneous laughter. We removed two of the twelve subjects;
one displayed extremely asymmetrical facial expressions (IB4005.2), the other
displayed a strong nervous tick in the muscles around the mouth (IB4003.3,
IB4003.4). We used the close-up video recording (DivX AVI codec 5.2.1, 2300
Kbps, 720 × 576 pixels, 25 frames per second) and the headset audio recording
(16 KHz WAV file) of each participant for our corpus.

We were unable to use the laughter-annotations provided with the AMI-
Corpus as these are often not correctly aligned. Therefore the seven meetings we
selected from the AMI Meeting Corpus were segmented into laughter by the first
author. Due to the spontaneous nature of these meetings, speech, chewing and
occlusions sometimes co-occur with the laughter and non-laughter segments.

The final corpus is built from the segmented data. The laughter instances
are created by padding each laughter segment with 3 seconds on each side to
capture the visual onset and offset of a laughter event. Laughter segments that
overlapped after padding are merged into a single laughter instance. A prelim-
inary experiment indicated that including these 3 seconds improved the classi-
fication performance significantly. The non-laughter instances are created from
the audio-visual data that remains after removing all the laughter segments.
The length of the non-laughter instances is taken from a random Gaussian dis-
tribution with a mean and standard deviation equal to the mean and standard
deviation of the laughter segments.

We have based our corpus on 60 randomly selected laughter and 120 randomly
selected non-laughter instances, in which 20 facial points needed for tracking are
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Fig. 1. Example laughter segments for the subjects

visible. We included some barely audible laughs and laughter overlapping with
speech, in contrast to [17, 18] where no speech was included in the laughter seg-
ments. Some examples of laughter segments are displayed in Fig. 1. We made
sure no smiles occurred in the non-laughter instances. To test the validity of the
class-labels, two other annotators annotated the corpus. One annotator rated 4
laughter-instances as non-laughter, the other annotator agreed completely, re-
sulting in a agreement of 97.7%. Of all the 180 instances, 59% contains speech of
the visible participant. Almost all instances contain background speech. Together
these instances form 25 minutes of audio-visual data. The dataset is available at
http://hmi.ewi.utwente.nl/ami-laughter.

3.2 Features

Audio Features. We use RASTA-PLP features to encode the audio-signal.
RASTA-PLP adds filtering capabilities for channel distortions to PLP features,
and yields significantly better results for speech recognition tasks in noisy

http://hmi.ewi.utwente.nl/ami-laughter
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environments than PLP [6]. We used the same settings as were used by Truong
and Van Leeuwen for PLP features [21]. The 13 cepstral coefficients (12 model
order, 1 gain) are calculated over a window of 32 ms with a step-size of 16 ms.
Combined with the temporal derivative (calculated by convolving with a simple
linear-slope filter over 5 audio frames) this resulted in a 26 dimensional feature
vector per audio frame. We normalized these 26-dimensional feature vectors to
a mean μ = 0 and a standard deviation σ = 1 using z-normalization.

Video Features. The video channel is transformed into sequences of 20 two-
dimensional facial points located on key features of the human face. These point
sequences are subsequently transformed into orthogonal features using a Princi-
pal Component Analysis (PCA).

The points are tracked as follows. The points are manually assigned at the
first frame of an instance movie and tracked using a tracking scheme based on
particle filtering with factorized likelihoods [16]. We track the brows (2 points
each), the eyes (4 points each), the nose (3 points), the mouth (4 points) and
chin (1 point). This results in a compact representation of the facial movement
in a movie using 20 (x, y)-tuples per frame. This tracking configuration has been
used successfully for the detection of the atomic action units of the Facial Action
Coding System (FACS) [22].

After tracking, we performed a PCA on the 20 points per video-frame with-
out reducing the number of dimensions; the principal components now serve as
a parametric model, similar to the Active Shape Model of Cootes et al. [5]. No
label information was used to create this model. An analysis of the eigenvectors
revealed that the first five principal components encode the head pose, includ-
ing translation, rotation and scale. The other components encode interpersonal
differences, facial expressions and corrections for the linear approximations of
movements (see Figure 3.5 of [19]).

In order to capture temporal aspects of this model, the first order derivative
for each component is added to each frame. The derivative is calculated with
Δt = 4 frames on a moving average of the principal components with a window
length of 2 frames. Again, we normalized this 80-dimensional feature vector to
a mean μ = 0 and a standard deviation σ = 1 using z-normalization.

3.3 Classification

We evaluate Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs)
and Support Vector Machines (SVMs) for classification. GMMs and HMMs model
the distribution for both classes and classify by estimating the probability that an
instance was produced by the model for a specific class. GMMs and HMMs are fre-
quently used in speech recognition and speaker identification, and have been used
before for laughter recognition [3, 12, 14, 21]. SVMs are discriminatory classifiers,
and have been used for laughter detection in [13, 21]. We used HMMs and GMMs
for the audio-modality and SVMs for the video-modality as this resulted in the
best performance [19].

The HMMs we use model the generated output using a mixture of Gaussian
distributions. We used two different topologies; the left-right HMMs that are
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frequently used in speech recognition, and ergodic HMMs that allow transitions
from all states to all states. For the SVMs we use a sliding window of 1.20 seconds
to create fixed-length features from the video segments. During classification, a
probability estimate for the different windows of an instance is calculated. The
final prediction of an instance is the mean of its window-predictions. We use
Radial Basis Function (RBF) kernel SVMs, which are trained using LIBSVM [4].

To estimate the generalization performance of the classifiers, we perform two
times 15-fold cross-validation. Inside each fold, we use 1/28 of the training data
as a validation set to select model parameters such as the HMM configuration,
the number of Gaussians and the C and γ parameter of the SVMs, the rest
of the training data is used to train classifiers. To find well-performing model
parameters we use a multi-resolution grid search [11]. Note that we extracted the
PCA-model outside of the cross-validation loop to focus on the generalization
performance of the classification. However, we do not expect that this has a big
influence on the measured performance.

Fusion. Fusion is performed on the decision-level, which means that the output
of an audio and a video classifier is used as input for the final fused prediction.
For each instance we classify, probability estimates are generated for the audio
and video modalities. Fusion SVMs are trained on the z-scores of the estimates
using the same training, validation and test sets as used for the single modality
classifiers. The output of these SVMs is a multi-modal prediction based on high-
level fusion. As an alternative to this learned fusion, we tested fusion using a
weighted-sum of the single-modality predictions:

ffused(x) = α ∗ fvideo(x) + (1 − α) ∗ faudio(x). (1)

Evaluation. We have chosen to use the Area Under Curve of the Receiver
Operating Characteristic (AUC-ROC) as performance measure because it does
not depend on the bias of the classifier, and is class-skew invariant [7]. The AUC-
ROC of a classifier is equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative
instance. In addition to the AUC-ROC performance, we will report the EER
for a classifier. The EER is the point on the ROC where the false-positive rate
equals the false-negative rate. A paired two-tailed t-test is used to compare the
AUC-ROCs of the different classifiers.

4 Results

For audio, the GMM classifiers performed better than the HMM classifiers, re-
sulting in a mean AUC-ROC of 0.825. On average 16.9 Gaussian mixtures were
used to model laughter, non-laughter was modeled using 35.6 Gaussian mixtures.
The HMM performed slightly worse with an AUC-ROC of 0.822. The HMMs
used 11.6 fully connected states to model laughter, and 21.3 fully connected
states to model non-laughter. Surprisingly, no left-right HMMs were selected in
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Table 2. The performance of the audio and video classifiers. The standard deviation
of the AUC-ROCs is displayed between parenthesis.

Classifier Params AUC-ROC EER

RASTA-GMM 16.9 (3.2) pos. mix., 35.6 (5.9) neg. mix. 0.825 (0.143) 0.258
RASTA-HMM 11.6 (1.9) pos. states, 21.3 (1.9) neg. states 0.822 (0.135) 0.242
Video-SVM C = 2.46, γ = 3.8 × 10−6 0.916 (0.114) 0.133

Table 3. Results of the decision-level fusion. The t-test is a paired samples t-test on the
AUC-ROCs of the video-SVM (V-SVM) classifier and the specified fusion classifiers.
The mean value of the AUC-ROCs is displayed with the standard deviation displayed
between parenthesis.

Fusion Features T-test AUC-ROC EER

RBF-SVM V-SVM + R-GMM t(29) = 2.45, p < 0.05 0.928 (0.107) 0.142
RBF-SVM V-SVM + R-HMM t(29) = 1.93, p = 0.06 0.928 (0.104) 0.142
W-sum, α = 0.57 V-SVM + R-GMM t(29) = 2.69, p < 0.05 0.928 (0.107) 0.142
W-sum, α = 0.55 V-SVM + R-HMM t(29) = 2.38, p < 0.05 0.930 (0.101) 0.142

the model selection procedure. This indicates that there was no strict sequen-
tial pattern for laughter that could be exploited for recognition, which seems to
support the claim that laughter is a group of sounds [20].

The SVM video-classifier outperformed the audio-classifiers with an AUC-
ROC of 0.916, using a mean C = 2.46 and a mean γ = 3.8 × 10−6. See Table 2
for the performance of the different single-modality classifiers. Note that these
performances are measured on normalized datasets, and we do not test the gen-
eralization performance over subjects.

We used these classifiers to perform decision-level fusion. The performance
of the different fusion configurations is displayed in Table 3. The fused clas-
sifiers have a higher mean AUC-ROC than the single-modality classifiers. In
the case of SVM-fusion, the combination of the video-SVM classifier and the
RASTA-GMM classifiers outperforms the best single-modality classifier slightly,
but significantly. Inspection of the trained (RBF) SVM-classifiers reveals that
the separating hyperplane is nearly linear.

In addition to fusion using a SVM, we used a weighted-sum rule (1) to combine
the output of the audio and video classifiers. The weight of both modalities is
determined using the α parameter. The highest mean AUC-ROC values are
obtained in the region with a more dominant audio-classifier. However, for a
significant improvement over the video-SVM classifier α = 0.57 and α = 0.55
are needed for the RASTA-GMM and the RASTA-HMM classifier respectively
(see Table 3).

When we compare the ROC of the linear fusion classifiers with the ROC
of the video-SVM classifiers, we can see that the EER of the fused classifiers
is higher than the EER of the video-SVM classifiers (see Fig. 2). Most of the
performance-gain is obtained in the direct vicinity of the EER point, where the
error-rates are not equal. This trend is also visible with the SVM-fusion. This can
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Fig. 3. The normalized output of the audio and video classifiers on the test-sets. Laugh-
ter instances are marked with an plus, non-laughter instances are marked with a dot.

be explained by the observation that for unequal error rates the fusion classifier
can exploit the complementary nature of both modalities, which it cannot do for
the threshold with an equal error rate, where the hyperplane needs to separate
instances for which both modalities are uncertain (see Fig. 3).
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5 Conclusion and Future Work

Our goal was to perform automatic laughter detection by fusing audio and
video signals on the decision level. We have built audio and video-classifiers,
and demonstrated that the fused classifiers significantly outperformed the best
single-modality classifiers. The best audio-visual classifiers are constructed using
a weighted sum of the RASTA-HMM and video-SVM classifiers, resulting in a
AUC-ROC performance of 0.930. While fusion on the decision-level improves
the performance of the laughter-classifier significantly, fusion seems only benefi-
cial for classification with unequal false-negative and false-positive rates. With
equal error rates, the decision-boundary has to separate instances for which both
modalities are uncertain. For unequal error rates, these instances fall on one side
of the decision-boundary, and now instances with only one uncertain modality
can be classified more reliably, resulting in a better performance.

For future work we recommend an investigation of fusion on the feature-level.
We have demonstrated that decision-level fusion can improve the performance,
but it is not yet clear how this relates to other fusion techniques, such as feature-
level fusion. Previous work on audio-visual laughter detection is inconclusive on
this subject. A limitation of this experiment is that we removed smiles from
our corpus. Adding a smile class to the corpus would most likely decrease the
performance of the video-classifier. A follow-up experiment could show if fusion
would increase the performance in this setting. In addition to these technical
challenges, focussing on the context in which laughter and smiles occur would
form an interesting subject. During segmentation we observed interaction be-
tween laughter and smiles of different participants in a meeting. It is likely that
laughter detection can be improved by explicit use of interactions and semantic
information.
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Abstract. Laughter is a key element of human-human interaction, oc-
curring surprisingly frequently in multi-party conversation. In meetings,
laughter accounts for almost 10% of vocalization effort by time, and is
known to be relevant for topic segmentation and the automatic charac-
terization of affect. We present a system for the detection of laughter,
and its attribution to specific participants, which relies on simultane-
ously decoding the vocal activity of all participants given multi-channel
recordings. The proposed framework allows us to disambiguate laughter
and speech not only acoustically, but also by constraining the number of
simultaneous speakers and the number of simultaneous laughers indepen-
dently, since participants tend to take turns speaking but laugh together.
We present experiments on 57 hours of meeting data, containing almost
11000 unique instances of laughter.

1 Introduction

Laughter is a key element of human-human interaction, occurring surprisingly
frequently in multi-party conversation. In meetings, laughter accounts for almost
10% of vocalization effort by time [1]. It has been identified as potentially relevant
to discourse segmentation [2], to inference of humorous intent and detection of
interlocutor-specific emotional expression [3], and to classification of perceived
emotional valence [4]; several of these tasks call for not only the detection of
laughter, but also its correct attribution to specific participants. Laughter is
known to lead to the temporary abandonment of turn-taking policy, making its
detection relevant in topic change detection [5], important for meeting browsing
[6], and potentially instrumental to the identification of conversational hotspots,
of which an overwhelming majority is associated with amusement [7].

Laughter detection in meetings has received some attention, beginning with [2]
in which farfield group laughter was detected automatically, but not attributed to
specific participants. Subsequent research has focused on laughter/speech clas-
sification [8, 9] and laughter/non-laughter segmentation [10, 11]. However, in
both cases, only a subset of all laughter instances, those not occurring in the
temporal proximity of the laugher’s speech, was considered. Furthermore, in
segmentation work, some form of pre-segmentation was assumed to have elim-
inated long stretches of channel inactivity [10, 11]. These measures have led to
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significantly higher recall and precision rates than would be obtained by a fully
automatic segmenter with no a priori channel activity knowledge.

The aim of the current paper is to provide a first fully automatic baseline
system for the detection and participant attribution of laughter as it occurs
naturally in multiparticipant conversation. While in single-participant recordings
laughter can be detected using a speech recognizer augmented with laughter
models, in multiparticipant contexts audio must first be segmented and crosstalk
from background participants to each channel suppressed. The latter represents a
significant challenge for vocal activity detectors in meetings [12]. In constructing
the proposed baseline system, we rely on several contrastive aspects of laughter
and speech, including acoustics, duration, and the degree of vocalization overlap.

This work begins with a description of the meeting data used in our exper-
iments (Section 2), which was selected to be exactly the same as in previous
work [2, 8, 9, 10, 11]. However, our aim is to detect all laughter-in-interaction,
including laughter which is interspersed among lexical items produced by each
participant. We describe our multiparticipant vocal activity model in Section 3
and quantify the performance of its implementation in Section 4. Contrastive ex-
periments are presented in Section 5, leading to a discussion of various aspects
of the proposed task. Finally, we compare our findings and observations with
those of other authors in Section 6, before concluding in Section 7.

2 Data

As in other work on laughter in naturally occurring meetings [2, 8, 9, 10, 11], we
use the ICSI Meeting Corpus [13]. 67 of the 75 meetings in the corpus are of one
of three types, Bed, Bmr, and Bro, representing longitudinal recordings of three
groups at ICSI. The total number of distinct participants in these three subsets
is 23; there are 3 participants who attend both Bmr and Bro meetings, and only
1 participant who attends both Bmr and Bed meetings. Importantly, none of the
meeting types have a fixed number of participants per meeting, allowing us to
demonstrate the applicability of our methods to arbitrary group sizes.

We rely on two reference segmentations of the ICSI corpus, one for speech
and one for laughter. The speech segmentation was constructed using the word
start and end times from automatic forced alignment, available in the ICSI
MRDA Corpus [14]. Inter-word gaps shorter than 0.3 s have been bridged to
yield talkspurts [15], consisting of one or more words (and/or word fragments);
this process, as well as the 0.3 s threshold, has been used extensively in NIST
Rich Transcription Meeting Recognition evaluations [16]. The corresponding seg-
mentation of laugh bouts [17] has recently been built for this data [1, 18] using
the available mark-up in the orthographic transcription and a combination of
automatic and manual alignment methods. Intervals during which a participant
both laughs and speaks (a phenomenon referred to as “speech-laughs” [19]) have
been mapped to speech only, such that the categories of silence N , speech S,
and laughter L are mutually exclusive.

The majority of experiments we present are performed using one type of
meeting in the corpus, the Bmr meetings. In [2, 8, 9, 10, 11], the first 26 Bmr
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meetings were designated as training data, and the last 3 held out for testing.
We retain that division in the current work.

3 Multiparticipant 3-State Vocal Activity Recognition

3.1 Model Topology

Detection in the proposed system consists of Viterbi decoding in a hidden Markov
model (HMM) state space which simultaneously describes the state of all K
participants to a particular conversation C. Each participant k, 1≤k≤K, can
occupy one of three acoustically distinct (AD) states: speech S, laughter L,
and non-vocalization N ; where convenient, we will also refer to vocalization
V ≡ ¬N ≡ S ∪L. Furthermore, each AD state is implemented by a left-to-right
state sequence, enforcing a minimum duration constraint on AD state occu-
pation. A projection of the complete K-participant HMM topology onto the
state subspace of any single participant is shown in Figure 1. Each minimum
duration constraint T Υ

min, Υ ∈ {S,L,N}, yields the corresponding number of

N (−4)N (−3)

N (−2)

N (−1) N (0)

S(+1)

S(+2)

S(+3)

S(+5)

S(+4)

L(+5)

L(+4)

L(+3)

L(+2)

L(+1)

Fig. 1. A projection of the full HMM multiparticipant state space onto the state sub-
space of a single participant. Shown are three acoustically distinct (AD) states, each
duplicated 5 times to illustrate how minimum AD state occupation is enforced. N (0)

represents the default long-time inactive state.
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single-participant topology states per AD state, NΥ
min ≡ �T Υ

min/Tstep�, where
Tstep is the frame step or shift. As a result, the single-participant state subspace
consists of N =

∑
Υ NΥ

min states.
A consequence of the above is that a multiparticipant conversation C, of K

participants, can be in one of NK states. To render search computationally
tractable, we admit only a fraction of these states during decoding, via three
constraints: (1) the number of simultaneously speaking participants can be no
greater than KS

max; (2) the number of simultaneously laughing participants can
be no greater than KL

max; and (3) the number of participants not in the “default”
state N (0) can be no greater than K¬N

max. The resulting space consists of Neff

states, {Si}, with 1≤i≤Neff . Each state Si emits a multi-channel observation
with time-independent emission probability bi.

Transition from state Si to state Sj , Si → Sj , with 1≤i≤Neff and 1≤j≤Neff ,
is possible provided that for each speaker k, the single-participant transition
Si [k] → Sj [k] is licensed by Figure 1. An allowed transition Si → Sj is taken
with time-independent probability aij = P (qt+1 = Sj |qt = Si ), where qt is
the multiparticipant state of the meeting at time t.

3.2 Acoustic Model

We seek to define the probability density that a particular multi-channel ob-
servation Xt ∈ �K×F , where F is the number of features drawn from a single
channel in an observation window of Tsize in duration, is emitted from a multi-
participant state Si. The main difficulty is that K, the number of participants,
may vary from conversation to conversation, and we wish to avoid having to train
variable-length observation models. We address this difficulty as in [20], by in-
troducing the factorial decomposition P (Xt |Si ) =

∏K
k=1 P (Xt [k] | ζ (Si, k) ).

Each factor is a Gaussian mixture model (GMM) likelihood

P (X [k] | ζ (Si, k) ) =
M∑

m=1

pζ(i,k),mP
(

X [k] | N
(

μζ(i,k),m, σ2
ζ(i,k),m

))
, (1)

where M is the number of GMM components,
∑M

m=1 pζ(i,k),m = 1 and N
(
μ, σ2

)
is a multivariate, diagonal-covariance Gaussian distribution. The number of di-
mensions is equal to F , the number of single-channel features computed. ζ (i, k)
represents the state of the kth close-talk microphone, as explained below.

Although modeling each microphone as being in one of three states is the most
natural approach to N/S/L segmentation, efforts in single-participant N/S seg-
mentation have extended this model to farfield activity states (ie. [21]). In [22],
three states were considered: S, N , and VF , the latter corresponding to only
farfield speech. We make the corresponding extension here, whereby

ζ (i, k) ≡

⎧⎪⎪⎨
⎪⎪⎩

S, if Si [k] = S
L, if Si [k] = L
VF , if Si [k] = N and ∃j such that Si [j] 
= N
N , if Si [j] = N ∀j .

(2)
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As a result, there are 4K multimicrophone states; however, only 3K of them
correspond to valid conversation states (e.g., all participants cannot be in VF ).

All 4 single-microphone acoustic models are defined over a feature space of
F = 41 features: log-energy, 13 Mel-frequency cepstral coefficients (MFCCs; ex-
cluding C0), their first- and second-order derivatives, as well as the minimum and
maximum normalized log-energy differences (NLEDs). The latter two features
were designed for differentiating between nearfield and farfield vocal activity [23].
Using the reference speech and laughter segmentation of all 26 Bmr meetings, one
Gaussian mixture with M = 64 components was trained per model to maximize
the class-conditional likelihood of the training data.

3.3 Transition Model

We seek to define a time-independent probability that conversation C will tran-
sition out of a multiparticipant state Si into a multiparticipant state Sj . As with
emission probabilities, the fundamental difficulty is the potential for K to not
be known, or ever seen in the training material.

Although a full exposition of our transition model considerably exceeds the
current space limitations, we mention that the model probabilities are indepen-
dent both of the identities of all participants and of their assignment to particular
channels k, namely that

aij = P (qt+1 = Sj |qt = Si )
= P (R · qt+1 = R · Sj |R · qt = R · Si ) . (3)

where R is an arbitrary K×K row rotation operator. We refer the reader to [24]
for full details of the model, its general training algorithm, and its application.

Here, the transition model probabilities aij were trained using forced-alignment
of the reference 3-way N/S/L multiparticipant segmentation. To achieve this,
each frame qt was assigned a pseudo-likelihood P (qt|Si) = αd, where d is the
number of mismatched participant states between qt and Si, and α is a small num-
ber (10−4). The Viterbi pass was performed with all allowed transitions aij having
a probability of unity (leading to

∑
i aij ≥ 1), to not disfavor self-transitions at

high fan-out states.

4 Performance of Proposed System

The HMM topology described in Subsection 3.1 was constructed with frame step
and size of Tstep = Tsize = 0.1 seconds, as in our work on V/¬V segmentation
[25]. The minimum duration constraints Tmin ≡ (T S

min, TL
min, TN

min

)
were set to

(0.2, 0.4, 0.3) seconds, leveraging our findings in [25] and [1]. The latter work, in
which it was shown that overlap rates are higher for laughter than for speech, has
also led us to impose the overlap constraints Kmax ≡ (KS

max, KL
max, K¬N

max

)
=

(2, 3, 3). System sensitivity to these settings is explored in Section 5.
With emission and transition probabilities inferred as described in Subsec-

tions 3.2 & 3.3, the system was applied to the 3 Bmr meetings in the testset.
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Table 1. Confusion matrix for 3-way N/S/L participant-state recognition for the
system described in Section 3. Reference (Ref) class membership is shown in rows,
hypothesized membership in columns. Time is shown in minutes; the total duration of
the analyzed audio is 827 minutes. Total reference and hypothesized state occupation
(total), per state, is given in italics in the last column and row, respectively.

Hypothesized as
Ref N S L total
N 685.4 7.8 22.9 716.2
S 11.0 79.0 4.5 94.4
L 6.5 1.0 9.2 16.6

total 702.9 87.8 36.6

The resulting confusion matrix is shown in Table 1. As can be seen, the prior
distribution over the three classes N , S, and L (column 5), is significantly un-
balanced. Laughter is hypothesized for 9.2 minutes out of the total 16.6 present,
yielding a recall of 55.2%. However, laughter is also hypothesized for 22.9 min-
utes of nearfield silence, pulling precision down to 25.1%. In fact, the largest
confusions in the matrix are seen between laughter and nearfield silence. Prelim-
inary analysis suggests that this is due to laughter models capturing participants’
breathing. Unvoiced laughter in particular is perceptually similar to exhalation.
This suggests that, in future work, voiced and unvoiced laughter should be mod-
eled separately, especially given that unvoiced laughter is overlapped with other
unvoiced laughter only infrequently; the same is not true for voiced laughter [18].

5 Contrastive Experiments

In this section, we would like to answer the following questions:

1. What role do minimum duration constraints play in detecting laughter?
2. What role do vocalization overlap constraints play in detecting laughter?
3. How does detection performance generalize to unseen datasets?

We train alternate systems to answer each question, and contrast performance
with that of the system from Section 4. Recall, precision, and F -scores of both
speech and laughter V ≡ S ∪ L, of speech alone S, and of laughter alone L, are
shown over the full 13.8 hours of test audio.

5.1 Minimum Duration Constraints

To determine the impact of duration modeling on system performance, we train
two alternate transition models, differing in the minimum duration constraints
Tmin ≡ (T S

min, TL
min, TN

min

)
from the system described in Section 4. The first of

these systems involves a fully-connected (ergodic) HMM topology, on which no
minimum duration constraints are imposed (ie. Tmin = (0.1, 0.1, 0.1) seconds,
given our analysis frame step Tstep = 0.1 s). The second system enforces equal
minimum duration constraints of 0.3 s on each of the three AD states, N , S, and
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Table 2. Recall (R), precision (P) and F -score (F) as a function of minimum du-
ration constraints Tmin ≡ `

TS
min, TL

min, TN
min

´
. The frame step and frame size are

identically 100ms, and the maximum simultaneous vocalization constraints Kmax ≡`
KS

max, KL
max, K¬N

max

´
are (2, 3, 3) for all systems shown. Performance is shown for vo-

calization V = S ∪L (versus N ) in columns 2-4, for S (versus ¬S = N ∪L) in columns
5-7, and for L (versus ¬L = N ∪ S) in columns 8-10. The system from Section 4 is
identified with “§4”; best performance on each metric, across systems, is in bold.

V ≡ S ∪ L S L
Tmin (s)

R P F R P F R P F

(0.1, 0.1, 0.1) 84.1 72.8 78.1 82.3 89.9 86.0 55.9 22.1 31.7
(0.3, 0.3, 0.3) 84.5 75.1 79.5 83.7 90.4 86.9 54.7 24.2 33.6

§4 (0.2, 0.4, 0.3) 84.3 75.3 79.5 83.6 90.0 86.7 55.2 25.1 34.5

L; its Tmin is (0.3, 0.3, 0.3) seconds. In every other respect, these two systems
are identical to that in Section 4; performance of all three is shown in Table 2.

As the table shows, the system with equal minimum duration constraints of
300 ms on the occupation of each of N , S, and L outperforms the ergodic system
on all measures except recall of laughter, which is lower by 1.2%. In particular,
we note a 2.3% increase in V precision and a 2.1% increase in L precision. This
variation is expected since the non-ergodic system cannot hypothesize spurious
single-frame segments, which are unlikely to be vocal productions for physiolog-
ical reasons. For assessing whether minimum duration constraints discriminate
between speech and laughter, the Tmin = (0.3, 0.3, 0.3) system is most appropri-
ate because both it and the system in Section 4 allow each participant to be in
one of 9 states; in the ergodic system, that number of states is 3. Table 2 shows
that both the recall and precision of laughter are higher in the (0.2, 0.4, 0.3)
system than in the (0.3, 0.3, 0.3) system, and suggests that minimum duration
constraints can be used to advantage when detecting laughter-in-interaction in
multi-channel audio.

5.2 Maximum Simultaneous Vocalization Constraints

Second, we assess the impact of limiting the maximum number of participants
allowed to simultaneously vocalize by modifying the maximum simultaneous
vocalization constraints Kmax ≡ (

KS
max, KL

max, K¬N
max

)
. For this purpose, we

construct 3 alternate systems. The first, whose Kmax = (2, 2, 2), allows up to
two participants to be in single-participant states other than N (0), and up to
two participants to be simultaneously speaking or laughing. This is a standard
extension of our meeting recognition V/¬V segmenter [25]. The second alternate
system, whose Kmax = (2, 2, 3), adds two additional cases: (1) only two par-
ticipants speaking and only one participant laughing; and (2) only two partici-
pants laughing and one participant speaking. Finally, the third alternate system
(Kmax = (3, 2, 3)) adds the case of only three participants speaking and none
laughing. In contrast, the system desribed in Section 4, allows for only three par-
ticipants laughing and none speaking. The Kmax = (3, 2, 3) could be expected
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Table 3. Recall (R), precision (P), and F -score (F) as a function of maximum si-
multaneous vocalization constraints Kmax ≡ `

KS
max, KL

max, K¬N
max

´
. The frame step

and frame size are identically 100ms, and the minimum duration constraints Tmin ≡`
TS

min, TL
min, TN

min

´
are (0.2, 0.4, 0.3) seconds for all systems shown. Symbols as in Table 2.

V ≡ S ∪ L S L
Kmax

R P F R P F R P F

(2, 2, 2) 80.5 82.1 81.3 83.3 90.6 86.8 36.9 27.8 31.7
(2, 2, 3) 84.0 76.1 79.9 84.0 89.0 86.4 48.8 24.3 32.4
(3, 2, 3) 84.1 76.1 79.9 84.2 88.6 86.4 49.1 24.6 32.8

§4 (2, 3, 3) 84.3 75.3 79.5 83.6 90.0 86.7 55.2 25.1 34.5

to outperform the Kmax = (2, 3, 3) system if speech exhibited higher rates of
overlap than does laughter. All 4 systems are shown in Table 3.

As Table 3 shows, increasing K¬N
max from 2 to 3 increases recall but reduces

precision; the effect is more dramatic for L than for S because more of laughter
than of speech occurs in overlap. Allowing a third simultaneous speaker decreases
S precision by 0.4% and increases S recall by 0.2%. In contrast, allowing a
third simultaneous laugher increases L precision by 0.8%, and at the same time
increases L recall by 6.4%.

5.3 Generalization to Other Data

To close this section, we explore the performance of the system described in
Section 4 on several other datasets drawn from the ICSI Meeting Corpus. In
Table 4, we show the performance of our system on the Bro meetings, of which
there are 23, and on the Bed meetings, of which there are 15. Both of these sets
were completely unseen during development, and consist of 116 and 81 total
hours of single-channel audio, respectively.

We note first of all that although V recall and precision are lower on Bmr(test)
than on Bmr(train) by 0.8% and 0.4%, respectively, the differences are small. This
suggests that model complexity is low and the system not particularly prone to

Table 4. Recall (R), precision (P ), and F -score (F) of the system described in Section 4
on different subsets of the ICSI Meeting Corpus. pV(L) is the proportion of vocalization
time spent in laughter. Symbols as in Table 2.

V ≡ S ∪ L S L
Test data pV(L)

R P F R P F R P F

train 10.91 85.1 75.7 80.1 83.4 89.8 86.5 53.0 19.4 28.4
Bmr

test 14.94 84.3 75.3 79.5 83.6 90.0 86.7 55.2 25.1 34.5

Bro (all) 5.94 83.7 73.2 78.1 81.1 90.6 85.6 57.8 11.4 19.0
Bed (all) 7.53 88.5 65.2 75.1 84.6 85.7 85.2 58.7 10.0 17.0



Detection of Laughter-in-Interaction 157

overfitting. It is more surprising that V performance on the training data is not
higher, and may be indicative of the difficulty of the task.

As can be seen, laughter detection for Bmr(test) is better than for Bmr(train),
and much better in both Bmr subsets than for either the Bed or Bro meetings. It
appears that L precision is strongly correlated (r = 0.943) with the proportion
of vocalization time spent in laughter (pV(L) in column 3). Although pV(L) is
higher for Bed meetings than for Bro meetings, F -scores are higher for the latter
for all three of V , S, and L. This is likely attributable to the fact that fewer of
the Bed meeting participants than of the Bro meeting participants are present
in the Bmr training data (cf. Section 2).

The above findings indicate that the proposed data split [2, 8, 9, 10, 11] is
not particularly helpful in predicting laughter detection performance on unseen
data. This is because the Bmr test meetings contain an atypically high proportion
of transcribed laughter, even within the Bmr subset, rendering the distribution of
vocal activity types more balanced than elsewhere in the corpus, and therefore
detection results more optimistic. Further analysis is required to assess the cor-
relation between detectability and factors such as participant identity, laughter
quality, and the degree of laughter overlap by time.

6 Qualitative Comparison with Related Work

As mentioned in the Introduction, aspects of laughter detection in meetings have
been treated in [2, 8, 9, 10, 11]. Although the goal of each of the aforementioned
publications was different from ours, we present several common and differenti-
ating aspects in Table 5.

In the earliest work, [2], the authors dealt with multiple farfield microphones,
in an effort to identify simultaneous laughter from the majority of participants

Table 5. Overview of previous research on laughter/speech (L/S) classification and
laughter/non-laughter (L/¬L) segmentation, and of the current work, in terms of sev-
eral differentiating aspects

L/S class. L/¬L segm. this
Aspect

[8] [9] [11] [10] [2] work

close-talk microphones � � � � �
farfield microphones �
single channel at-a-time � � � �
multi-channel at-a-time � �
participant attribution � � � � �
only group laughter �
only isolated laughter � � �
only clear laughter �
rely on pre-segmentation � � ?
rely on prior rebalancing � � ?
rely on channel exclusion ? �
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present, with no intention of attributing laughter to specific participants. These
three aspects make [2] the most dissimilar from among the work cited in Table 5.

Research on laughter/speech classification [8, 9] has assumed the presence of
manual pre-segmentation into intervals of approximately 2 s in duration and
anticipates balanced priors in the testset. Furthermore, it treats only 47% of the
transcribed laugh bouts, namely those which have been assigned their own ut-
terances by the original ICSI transcription team. Although these conditions are
different from the ones faced in the current work, [9] has shown that focusing on
only 28% of the transcribed laugh bouts, those considered clearly perceptible,
decreases EERs by 4%. This suggests that N/S/L segmentation may benefit by
treating different types of laughter differently, especially if applications distin-
guish among laughter types.

Research in laughter/non-laughter segmentation [10, 11] is more relevant to
the current work. This is not least because, as we have shown, nearfield laugh-
ter tends to be confused much more with nearfield silence than with nearfield
speech. In spite of this, and despite identical training and testing data, a direct
performance comparison with the current work is not possible. [10] assumes the
presence of a preliminary (perfect) vocal activity detector which justifies the
exclusion of nearfield channels exhibiting prolonged silence during testing. This
is effectively a form of pre-segmentation which also achieves prior rebalancing,
and the extent to which [10] relies on such exclusion is not documented. Fur-
thermore, contrary to our own unpublished observations, the experiments in [10]
recommend a framing policy with a small frame step but a large frame size; in
conjunction with the current work, a potential emerging strategy is multipass
segmentation in which frame step and frame size decrease and increase, respec-
tively, from one pass to the next.

For completion, it should be noted that low precision continues to be a chal-
lenging problem [12] in speech/non-speech segmentation [21, 22, 26], and auto-
matic speech recognition word error rates are currently 2-3% absolute higher with
automatically produced segments than with manual segmentation [23, 25, 27].
As our confusion matrix in Section 4 shows, the separation between speech and
silence appears to be easier than that between laughter and silence, and laughter
segmenters exposed to the full duration of meeting audio are likely to incur more
insertions than those exposed only to pre-segmented portions.

7 Conclusions

We have proposed a simultaneous multiparticipant architecture for the detection
of laughter in multi-channel close-talk microphone recordings of meetings. The
implemented system does not rely on any form of manual pre-segmentation, and
achieves laughter recall and precision rates of 55.2% and 25.1%, respectively, on a
commonly used 14-hour dataset in which laughter accounts for 2% of time. These
figures represent the first baseline results for this task, and the findings indicate
that discrimination between nearfield laughter and nearfield silence, rather than
between nearfield laughter and nearfield speech, presents the biggest difficulties.
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Our experiments suggest that laughter segmentation stands to benefit from
contrastive constraints placed on the maximum allowed degree of simultaneous
vocalization as well as on minimum allowed state duration. Finally, we have
shown that laughter precision throughout the ICSI Meeting Corpus is most
strongly a function of the proportion of laughter present, and only second a
function of participant novelty.
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Abstract. We developed acoustic and lexical classifiers, based on a
boosting algorithm, to assess the separability on arousal and valence di-
mensions in spontaneous emotional speech. The spontaneous emotional
speech data was acquired by inviting subjects to play a first-person
shooter video game. Our acoustic classifiers performed significantly bet-
ter than the lexical classifiers on the arousal dimension. On the valence
dimension, our lexical classifiers usually outperformed the acoustic clas-
sifiers. Finally, fusion between acoustic and lexical features on feature
level did not always significantly improve classification performance.

1 Introduction

There is a vast amount of literature available about the acoustic correlates of
emotional speech. One of the goals of finding acoustic voice profiles for spe-
cific emotions is to provide discriminative speech features for automatic emotion
recognition. For example, low values of pitch, intensity and speech rate are char-
acteristic for sad speech [5]. Increased levels of pitch, intensity and speech rate
are characteristic for angry speech, but also for happy speech [5]. Thus it appears
that some emotions share similar acoustic characteristics which makes it difficult
for learning algorithms to discriminate between these emotions. This is one of
the reasons why acoustic discriminability on the valence dimension ( i.e., posi-
tive vs. negative) is still problematic: there are no strong discriminative speech
features available to discriminate between ‘positive’ speech (e.g., happiness) and
‘negative’ speech (e.g., anger). On the other hand, studies have found some
acoustic features that correlate with arousal (i.e., active vs. passive): researchers
agree that some acoustic features are discriminative between ‘active’ speech (e.g.,
anger) and ‘passive’ speech (e.g., sadness). Since it remains a challenge to find
acoustic profiles for emotions, other modalities through which emotions can be
expressed are increasingly being combined with the acoustic one.

In this paper, we focus on the use of acoustic and lexical features for emo-
tion recognition in spontaneous speech. Previous studies have already succesfully
combined acoustic and lexical information (e.g., [2,3,4]) for emotion recognition.
However, few have examined the relation between the type of information used,
acoustic or lexical, and the type of emotion dimension that is being modelled,
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c© Springer-Verlag Berlin Heidelberg 2008
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arousal or valence. For example, are lexical features more discriminative than
acoustic ones on the valence dimension? This is one of the research questions
that we address in our classification experiments.

In order to perform these classification experiments, we collected spontaneous
emotional speech data by letting participants play a first-person shooter video
game against each other. After playing the video game, the participants were
asked to rate their own emotions in categories and arousal and valence scales.
Boosting was used as a learning algorithm for our acoustic and lexical features.
The features were combined on feature level into one large feature vector. Finally,
the performances of the classifiers were compared to each other. We have defined
three hypotheses that we will test in this paper:

1. The arousal dimension is better modelled by acoustic than lexical classifiers
2. The valence dimension is better modelled by lexical than acoustic classifiers
3. A fusion between acoustic and lexical information always improves classifi-

cation performance

In assessing the performances of the classifiers, we are thus more interested in
the relative performance rather than the absolute performance of the classifiers.

This paper is structured as follows. In Section 2, we describe the data col-
lection and annotation procedure. The boosting algorithm and the acoustic and
lexical features are presented in Section 3. Section 4 explains how the classifiers
were evaluated. The results are presented in Section 5 and discussed in Section 6.

2 Data

2.1 Collecting Data

We collected spontaneous multimodal emotion data that contains recordings
from participants (all were native speakers of Dutch) who are playing a first-
person shooter video game (i.e., Unreal Tournament by Epic Games). In total, we
invited 28 participants (17 males and 11 females) to play the video game. Each
team consisting of 2 participants played against another team. The recruited
participant was asked to bring a friend as a teammate. The participants had
an average age of 22.1 years (2.8 standard deviation). A compensation fee was
paid to all participants and bonusses were granted to the winning team and the
team with ‘best collaboration’. The latter bonus was provided to encourage the
participants to be vocally expressive.

The game mode selected was ‘Capture the flag’ in which the goal was to cap-
ture the other teams’ flag as many times as possible. In order to elicit more
emotional events, the experimenter generated ‘surprising’ game events with the
game engine during the course of the game at an approximate rate of one ‘sur-
prising event’ per minute. For example, the experimenter issued sudden deaths
or sudden appearances of monsters, and also hampered the keyboard or mouse
controls during the game. The participants played two game sessions, each of 20
minutes long. Prior to each game session, they were allowed to ‘try’ the game
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for 10 minutes to get acquainted with the controls and the game. Furthermore,
they received instructions and a training session (40 minutes) involving the an-
notation tasks (see Section 2.3) that were carried out by the players themselves
(50 minutes) after each gaming session.

2.2 Recordings

High quality speech recordings were made with microphones that were attached
near the mouth to minimize the effect of crosstalk (overlapping speech from other
speakers) and background noise. The recorded speech was manually transcribed
(by the first author) after pre-processing the speech signal by a relatively simple
silence detection algorithm in Praat [7]. Furthermore, frontal views of the face
were recorded with webcams that were placed at eye-level height. Finally, the
video stream of the game content itself was captured as well.

2.3 Emotion Annotation: Self-reported Emotion Ratings

After a game session, each participant annotated his/her own emotions based
on the 3 types of information that were recorded during the game session and
that was made available to them: the audiovisual content containing (1) vocal
and (2) facial expressions in frontal view, and (3) the game content that was
captured. The participants watched the video content twice and performed two
different annotation tasks based on two approaches: 1) a discrete category-based
approach, and 2) a (semi-)continuous dimensional-based approach.

A category-based approach: ‘event-based’. In the category-based anno-
tation task, participants were asked to select and de-select emotion labels (see
Table 1) whenever they felt the emotion that they experienced at that moment
in the game, i.e., click to select an emotion label to mark the beginning of the
corresponding emotion and click again on the same label to de-select and to
mark the ending of that emotional event. The twelve emotion labels from which
the participants could choose were based on the ‘Big Six’ emotions and typi-
cally game-related emotions that were investigated in a study described in [8].
We expected that these labels (Table 1) would cover a large part of the range
of emotions that could occur during video gaming. Participants also had the
possibility to say aloud an emotion label if they felt the appropriate emotion
label was missing. The selection of multiple emotion labels at the same time was
possible, enabling the possibility to have ‘mixed’ emotions.

In a perception experiment, 18 subjects (we will refer to them as observers or
raters) rated a small subset of the data in exactly the same way as the players
themselves (we will refer to them as self-raters) had rated the data. We calculated
Krippendorff’s α [6] pair-wisely between the self-rater and an observer to assess
their agreement. We can observe in Table 2(a) that the averaged agreement is
relatively low (α ranges from -1 to 1) which is not entirely unexpected given the
highly subjective nature of the data.
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Table 1. The emotion labels used in the category-based annotation task (with the
Dutch labels in brackets)

Happiness (Blijdschap) Fear (Angst)
Boredom (Verveling) Anger (Boosheid)
Amusement (Amusering) Relief (Opluchting)
Surprise (Verbazing) Frustration (Frustratie)
Malicious Delight (Leedvermaak) Wonderment (Verwondering)
Excitement (Opgewondenheid) Disgust (Walging)

Table 2. Pair-wise agreement (Krippendorff’s α) between the self-rater and the ob-
servers

Emotion category mean min max

Frustration 0.36 0.15 0.69
Happiness 0.22 -0.11 0.56
Relief 0.14 -0.11 0.65
Excitement 0.13 -0.11 0.74
Amusement 0.09 -0.21 0.29

(a) Category-based annotation

Arousal Valence
mean min max mean min max

raw 0.16 -0.27 0.51 -0.09 -0.45 0.34
scaled 0.34 -0.07 0.70 0.30 -0.21 0.62

(b) Dimensional-based annotation

A dimensional-based approach: ‘(semi-)continuous-based’. In the
dimensional-based approach, the participants were asked to rate their own emo-
tions on two emotion scales namely arousal (active vs. passive) and valence
(positive vs. negative). As opposed to the category-based approach where the
participants had to mark the beginning and ending of an emotional event, the
participants now had to give ratings each 10 seconds on arousal and valence
scales (running from 0 to 100, with 50 being neutral) separately (thus not simul-
taneously as is the case in Feeltrace [9]). To adjust for individual differences, we
also re-scaled all the ratings per rater such that each rater has a range of [0,1].
The non-scaled ratings will be referred to as ‘raw’ and the re-scaled ratings will
be referred to as ‘scaled’.

Similar to the category-based approach, we assessed the agreement between
the self-rater and a number of observers (Table 2(b)). The agreement seems to
be comparable with the agreement in the category-based annotation task.

2.4 Selection of Data Used in Classification Experiments

Since the participants were provided audiovisual data during the self-annotation
process, and participants were asked to rate what they felt, not all annotated
data is useful when we want to train acoustic models: not all emotional expres-
sions need to be expressed via speech. Therefore, a selection of data had to be
made: for each emotional event or rating, we needed to know whether speech
was involved and if that was the case, we extracted this segment of speech and
labeled it as a certain emotion. Furthermore, a transcription at word level was
needed to train lexical models. To facilitate the transcription process, a relatively
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Fig. 1. Selection of speech segments that can be associated with an emotional event

simple silence detection algorithm (Praat [7]) was applied to the data. This de-
tection algorithm also determined the size of the units (we will also refer to
these units as segments) that were used for training and testing. The data was
manually transcribed at word level (by the first author) and some punctuation
marks, exclamation and question marks, were transcribed as well.

In the category-based approach, participants marked the beginning and end-
ing of an emotional event. We assumed that the marker of the beginning is more
reliable than the ending marker since we noticed that some emotional events
were extremely long; we suspect that participants might have forgotten to de-
select the emotion label to mark the ending. Also, we assume that there is a
delay between the real occurence of an emotional event and the moment that
an emotion label is selected. Figure 1 shows how we associated emotional events
with speech segments: check for a maximum of 5 segments prior to the moment
that the label was selected if 1) the segment ends within a margin of 3 sec-
onds before the label was selected, and 2) the segment contains speech. For the
dimensional-based approach, a similar selection procedure was applied. Each 10
seconds, an arrow appeared on the screen to signal the participants to give an
arousal and valence rating. We assume that there is a delay between the moment
that the arrow appeared and the moment that participants gave their ratings:
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Table 3. Amount of emotional speech data used in classification experiments

# segments in minutes # unique
pos neu neg tot (μ, σ in seconds) words

Category-based 1372 1458 2830 78.6 (1.67s, 1.26s) 1322

Dimension-based

pos neu neg

7473 186.2 (1.50s, 1.12s) 1963
2308 4047 1118
act neu pas
3145 3083 1245

for a maximum of 5 segments, check if 1) the segment starts within a margin
of 3 seconds from the moment that the arrow appeared, and 2) the segment
contains speech. Figures 2 and 3 visualize the amount of speech data that could
be associated with a category emotion or an arousal or valence rating.

The total amount of emotional speech data consists of approximately 78 min-
utes (2830 segments) and 186 minutes (7473 segments) for the category-based
and dimensional-based annotation approach respectively (see Table 3). In due
time, we hope to release the dataset publicly for research purposes.

3 Method

3.1 Learning Algorithm

We used boosting, i.e., Boostexter [1] as a learning algorithm for our acoustic and
lexical features. Boosting is an iterative algorithm that is based on the principle
of combining many simple and moderately inaccurate rules into a single, highly
accurate rule. These simple rules are also called weak hypotheses. The boosting
algorithm finds a set of weak hypotheses by calling the weak learner repeatedly
in a series of rounds. The weak hypotheses have the same basic form as that of a
one-level decision tree. As the boosting process progresses, importance weights
increase for training examples that are hard to predict and decrease for training
examples that are easy to classify. In this way, the weak learner can be forced
to concentrate on those examples which are hardest to classify. Boostexter is
an implementation of boosting that focusses on text categorization tasks. An
advantage of Boostexter is that it can deal with both continuous-valued input
(e.g., age) and textual input (e.g., a text string).

3.2 Acoustic Features

For the extraction of the acoustic features, we used the program Praat [7]. The
features were extracted over the whole segment. Based on previous studies that
have investigated acoustic correlates of emotion, we extracted mean, standard
deviation, the range (max−min) and the averaged slope of pitch and intensity.
Furthermore, information about the distribution of energy in the spectrum was
also employed (the more vocal effort, the more energy there is in the higher fre-
quencies of the long-term spectrum [11]): we computed the slope of the long-term
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averaged spectrum, the centre of gravity (a measure that indicates how high the
frequencies in a spectrum are on average) and skewness (a measure for how much
the shape of the spectrum below the centre of gravity is different from the shape
above the mean frequency), and the so-called Hammarberg index that measures
the difference between the energy in the low-frequency area and the energy in
the high-frequency area. These acoustic features were normalized to μ = 0 and
σ = 1 (where μ and σ were calculated over a development set).

In Boostexter, many simple rules are constructed by a sequence of rounds.
Each rule consists of a simple binary test, and predictions for each outcome
of this test. For continuous input, this test consists of determining whether a
continuous value is below or above a certain threshold. The outcome of this test
is associated with weights over the possible labels.

3.3 Lexical Features

As lexical features, we used relatively simple statistical language models that
model the sequences of words, i.e., an ‘N -gram’ model. For textual input, Boos-
texter makes rules that ask whether a sequence of N words is present or not
in the given text. Each outcome of a rule is described by a set of weights over
the possible labels that describe the strength of the prediction if the ngram is
present or not. In addition, speech rate was also extracted. Speech rate is usually
considered a prosodic feature but since we based its calculation on lexical fea-
tures, i.e., the number of words per seconds, we consider it in this particular case
lexical. These features were extracted on the manual or automatic transcription.
The automatic transcription was obtained by an automatic speech recognition
(ASR) system that performed free recognition. The TNO ASR system (Speech-
Mill, based on SONIC [10]) was trained on clean, grammatically correct read
aloud Dutch speech which forms a mismatch with our spontaneous speech data.
As a consequence, word error rate was extremely high.

3.4 Fusion

An advantage of Boostexter is that it can handle continuous and textual input
simultaneously which made fusion relatively easy and convenient. The lexical and
acoustic features were combined on feature level into one large feature vector by
simply concatenating the features.

4 Evaluation Procedure

In order to test our hypotheses, we defined three tasks and three conditions.
Task 1 investigates the separability on the valence dimension; it deals with Pos-
itive vs. Negative emotions that were defined by the category-based annotation.
Unfortunately, a similar category-based arousal discrimination task could not
be defined because the category-based annotation did not provide us a suffi-
cient amount of Passive speech data. Tasks 2 and 3 investigate separability on
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Table 4. Task definitions

Task description Type of annotation

Task 1 Positive vs. Negative Category
Task 2 Positive vs. Neutral vs. Negative Dimensional
Task 3 Active vs. Neutral vs. Passive Dimensional

valence (Positive vs. Neutral vs. Negative) and arousal (Active vs. Neutral vs.
Passive) dimensions respectively where the annotated data is acquired by the
semi-continuous dimensional-based annotation. Each task (see Table 4) is carried
out in 2 conditions that vary in the type of transcriptions:

1. Condi (MAN): word-level manual transcription made by first author
2. Condii (ASR): word-level automatic transcription obtained with ASR

Note that the same segments were used in Task 2 and 3 with the difference
that the distribution of the segments over the classes is different: this will make a
sound comparison between Task 2 and 3 possible. A 10-fold cross validation was
applied. In each fold, the data was divided in 3 exclusive sets: a training (∼ 80%),
development (∼ 10%) and testing set (∼ 10%). The proportions of the classes
were maintained in all sets. The development set was mainly used to perform a
parameter search. The following parameters of Boostexter were tuned: 1) number
of rounds (100 . . . 1500), 2) the window length for creating word-grams (1 . . . 5),
and 3) the type of word-grams (sparse word-grams up to a maximal length|full
word-grams up to a maximal length|full word-grams of maximal length only).
The criterion was to maximize the macro averaged F-measure (as the number of
categories is larger than two, we take the average of the per- categories results).
As performance measures, we report the macro averaged F-measure and accuracy
(number of correct classification divided by total number of classifications). In
addition, we report the accuracy of a baseline classifier that always chooses the
majority class.

5 Results

5.1 Task 1: Positive vs. Negative (Category-Based)

For Task 1, we achieved F-measures that lie within the range of 0.56 − 0.68
which are better than the baseline classifier (see Table 5). Since this is a binary
classification problem, we can also readily visualize the performance in ROC
and DET curves using the assigned weights of the test segments as decision
scores, see Figure 4(a) and 4(b). We can observe in Table 5 that the acoustic
classifier performs worse than the lexical one, and that fusion slightly improves
performance. McNemar tests confirmed that the lexical classifier is significantly
better than the acoustic one and that the fused classifier is not significantly
better than the best performing separate classifier (p < 0.05), i.e., the lexical
one. Condii ASR, based on the ASR transcription, expectedly performed worst.
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Table 5. F-measure (F) and accuracy (A) of classifiers in Task 1 in two conditions:
MAN and ASR. Base refers to the baseline classifier that always chooses the majority
class.

Acoustic Lexical Fusion Base
F A F A F A A

MAN 0.57 0.60 0.65 0.68 0.67 0.69
0.52

ASR 0.57 0.60 0.56 0.56 0.59 0.60
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Fig. 4. Results of binary classification Task 1, MAN condition: Positive vs. Negative

Table 6. Examples of sequences of words that were found in the weak hypotheses
during training in Task 1, condi MAN. ‘Pos weight’ refers to the weight that is assigned
to the Positive class when the word-gram is present in a text.

Unigram Bigram
Dutch English Pos

Weight
Dutch English Pos

Weight

Top5
Positive

geplaatst placed 1.179 goed zo well done 1.279
geluk lucky 1.074 over heen thereover 1.188
zijkant sideway 1.074 punt ik point I 1.173
geweldig great 1.060 pak ik get I 1.121
jah yeah 1.057 oh <lach> <laughter> 1.119

Top5
Negative

damn damn -1.286 geen punt no point -1.429
dacht thought -1.224 elke keer each time -1.297
elke each -1.218 ik nou I well -1.258
geeft gives -1.211 eh ik uh I -1.251
pakt gets -1.205 vlag niet flag not -1.249

Misc.

dankjewel thank you 1.020 yes gelukt yes done 0.908
<lach> <laughter> 0.971 oke ja OK yes 1.071
monster monster -1.182 dood shit dead shit -1.026
frustrerend frustrating -1.182 heel irritant very irritating -0.993
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Finally, in Table 6, we present a selection of sequences of words that were found
in the boosting progress in the weak hypotheses. Some word grams that have
an obvious inherent emotional connotation indeed received heavy weights, e.g.,
‘<laughter>’, ‘frustrating’, ‘very irritating’, while other seemingly neutral word
grams are receiving high weights as well, e.g., ‘sideway’, ‘get I’ etc.

5.2 Task 2: Positive vs. Neutral vs. Negative (Dimensional-Based)

The results achieved in Task 2 are less encouraging; we can observe in Table 7
that the classifiers barely perform above the baseline. However, when we compare
the results of the acoustic, lexical and fused classifier to each other, we can find
some support for the hypothesis that the lexical classifier significantly performs
better than the acoustic one (see Table 8(a)). Re-scaling the annotated data
or fusing acoustic and lexical features did not always improve performance: the
fused classifier did not perform significantly better than the best individual one
(i.e., the lexical one, see Table 8(a)).

5.3 Task 3: Active vs. Neutral vs. Passive (Dimensional-Based)

The arousal dimension seems to be better modelled than the valence dimen-
sion (see Table 9); the classifiers perform better than the baseline classifier. We
also found strong evidence for the hypothesis that acoustic classifiers can model
arousal better than lexical classifiers (see Table 8(b)): the acoustic classifiers per-
form significantly better than the lexical classifiers. Furthermore, fused classifiers
perform significantly better than single classifiers on the arousal scale (Table 8).

Table 7. Results Task 2: F-measure (F) and accuracy (A) in two conditions: MAN
and ASR. Base refers to a baseline classifier that always chooses the majority class.

‘raw’ ‘scaled’

Acoustic Lexical Fusion Acoustic Lexical Fusion Base
F A F A F A F A F A F A A

MAN 0.37 0.55 0.38 0.54 0.40 0.55 0.37 0.47 0.38 0.47 0.41 0.48
0.54

ASR 0.37 0.55 0.33 0.51 0.38 0.54 0.37 0.47 0.32 0.51 0.38 0.47

Table 8. Significance of Task 2 and 3: ‘A’=acoustic, ‘L’ =lexical. The underscore
indicates which single-modality classifier had the higher performance.

cond Hypothesis p < 0.05
raw scaled

MAN L > A no yes
ASR A > L yes yes

MAN Fuse > max(A,L) no yes
ASR Fuse > max(A,L) no no

(a) Task 2

cond Hypothesis p < 0.05
raw scaled

MAN A > L yes yes
ASR A > L yes yes

MAN Fuse > max(A,L) yes yes
ASR Fuse > max(A,L) no no

(b) Task 3
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Table 9. Results Task 3: F-measure (F) and accuracy (A) in two conditions: MAN
and ASR. Base refers to a baseline classifier that always chooses the majority class.

‘raw’ ‘scaled’

Acoustic Lexical Fusion Acoustic Lexical Fusion Base
F A F A F A F A F A F A A

MAN 0.39 0.49 0.38 0.46 0.42 0.51 0.41 0.43 0.38 0.41 0.44 0.45
0.42

ASR 0.39 0.49 0.34 0.44 0.40 0.48 0.41 0.43 0.33 0.38 0.41 0.43

6 Discussion and Conclusions

We have investigated automatic emotion recognition in spontaneous speech us-
ing multimodal information. Although the absolute performances are relatively
low, in our analyses we mainly assessed the differences between performances
to investigate what type of classifier works better in what emotion dimension.
The three types of classifiers were based on acoustic, lexical or acoustic plus
lexical information. These classifiers were trained to assess separability on the
arousal and valence dimensions. To that end, three tasks were defined: Task 1
and Task 2 investigated separability on the valence dimension and Task 3 investi-
gated separability on the arousal dimension. We tested 3 hypotheses against the
performances of the classifiers. The first hypothesis stated that discriminability
on the valence dimension is better modelled by lexical classifiers than acoustic
classifiers (Task 1, Task 2). We found strong evidence for this hypothesis: in the
majority of conditions that we have tested, we found that lexical classifiers in-
deed performed significantly (p < 0.05) better than acoustic ones on the valence
dimension (see Table 8). The second hypothesis tested whether acoustic classi-
fiers modelled the arousal dimension better than the lexical classifiers (Task 3).
We can accept this hypothesis since we found that all acoustic classifiers per-
formed significantly better than the lexical classifiers on the arousal dimension
(Table 8(b)). The third hypothesis tested whether fusion always improves per-
formance over the individual classifier. We did not find conclusive evidence for
this hypothesis. However, other ways of fusing multimodal information might be
more succesful, for example, fusion on decision level (i.e., combining the output
of the individual acoustic and lexical classifiers) rather than feature level (i.e.,
concatenating features into one large feature vector) could improve performance.

An issue that needs to be further discussed and investigated is to what extent
the performance is dependent on the annotation quality. In the current study, we
used the self-annotations of the players themselves who rated their own emotions.
As such, the classifiers presumably learned ‘felt’ emotions rather than ‘expressed’
emotions. The relative low averaged agreement between the self- rater and the
observers might indicate that the players did not always display felt emotions.
A re-annotation of the complete data by observers might be useful for classifiers
to learn expressed emotions. In future research, we also plan on improving the
absolute performance of the classifiers discussed in the current study.
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Furthermore, for the lexical classifier we used relatively simple language mod-
els. The lexical features can be enhanced by incorperating information from
affective lexical resources that list words and their corresponding affective rat-
ings. In addition, we can transform the textual input to a continuous represen-
tation of the textual input by using normalized term frequencies (tf-idf). These
continuous-valued vectors can be used as input to other learning algorithms such
as Support Vector Machines.
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Abstract. The automatic analysis of real-life, long-term behavior and
dynamics of individuals and groups from mobile sensor data constitutes
an emerging and challenging domain. We present a framework to clas-
sify people’s daily routines (defined by day type, and by group affiliation
type) from real-life data collected with mobile phones, which include
physical location information (derived from cell tower connectivity), and
social context (given by person proximity information derived from Blue-
tooth). We propose and compare single- and multi-modal routine repre-
sentations at multiple time scales, each capable of highlighting different
features from the data, to determine which best characterized the under-
lying structure of the daily routines. Using a massive data set of 87000+
hours spanning four months of the life of 30 university students, we show
that the integration of location and social context and the use of multi-
ple time-scales used in our method is effective, producing accuracies of
over 80% for the two daily routine classification tasks investigated, with
significant performance differences with respect to the single-modal cues.

1 Introduction

Human activity modeling from large-scale sensor data is an emerging domain
relevant to many applications, such as determining the behaviour and habits of
individuals and the structure and dynamics of organizations [1,2,3]. This could
be useful for social science research and self-awareness tools. Given the massive
amount of data captured by ubiquitous sensors over long periods of time and
involving many people, fundamental questions to address through automatic
analysis include: Do people follow similar routines? Do certain people not follow
other’s routines? Are routines useful in group discovery?

Recent research has attempted to analyze complex, real-life activities from in-
door sensors such as cameras, microphones, proximity, or motion sensors [3,4,5,6].
The limitations with indoor spaces are that the sensors are often fixed and only
those activities that occur in the (local) physical space covered by the sensors
can be recognized. Other recent approaches use wearable devices carried by peo-
ple, which collect various types of evidence of their activities, including motion
in dynamic environments [7] and audio in face-to-face conversations [1,8]. How-
ever, these wearable devices are not always practical for multiple users over long

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 173–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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periods of time. In this paper, we study human routines from sensors that have
become an integral part of our daily lives, mobile phones. The functionality of
this ubiquitous infrastructure of mobile devices is dramatically increasing [2,9],
not requiring users to modify their daily behavior for data collection.

We define routines to be temporal regularities in people’s lives. A routine often
involves patterns of locations (e.g. being at work or at home, or going from work
to home) and human interactions (e.g. as reflected by proximity information)
over time, possibly over different time scales. Automatic routine classification
and discovery are in general challenging tasks as people’s locations and inter-
actions often vary from day to day and from individual to individual, and data
from sensors can frequently be incomplete or noisy.

The problems addressed in this work are as follows: given a day in someone’s
life, measured solely in terms of the noisy location and proximity information
obtainable from a mobile phone, would this day more closely resemble a weekend
or a weekday? If the person analyzed was a student, would a day in her life
reveal potential group affiliations? More concretely, looking at the visualizations
of location and proximity days in Figure 1, does a given day (a row in each of
the visualizations) more closely resemble a weekend or a weekday? And do the
day’s routines appear more like an engineering or a business student’s typical
rituals? Answering such questions is difficult as users often work on weekends
and the similarity in routines over days is often high. We would like to know how
well we can automate these tasks. Using real-life data from the Reality Mining
dataset [2], involving a large group of people over thousands of hours of activity,
our work provides answers to these questions. This domain of research has been
reviewed as a very promising technology [10].

The first contribution of this work is the novel investigation of a set of
discriminant representations of location (measured from cell tower connection
information) and proximity (measured from Bluetooth information) within a
supervised learning framework. We investigated various representations charac-
terizing proximity and location features in a day, such as multiple time-scales,
proximity identity, quantity of proximate people, and representations with and
without time considerations, to determine which best represented the underlying
structure of the daily routines. The second contribution is the investigation of
location-driven and proximity-driven day-type classification from a single day
in the life of a user. The third contribution is the investigation of location-
driven and proximity-driven group-type classification from single users’ days.
The fourth contribution is the comparison of single-modal versus multi-modal
(i.e. multiple information sources) representations for location and proximity
data for the two activity recognition tasks at hand.

Overall, we found that integrating information at multiple time-scales is use-
ful, that fusing proximity and location information is beneficial compared with
individual cues, and that the targeted daily routines (day-type and student-
type) can be recognized with good accuracy (80.3% and 89.6%, respectively)
even though the sensor data is partly incomplete.
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There are many difficulties inherent to the activity recognition tasks at hand,
complicating the already challenging dataset we used. Issues with mobile phone
sensor data include poor indoor reception, incorrect data entries (due to the
phone being left behind) and Bluetooth errors, to name a few. Further, proximity
data is not always available, leaving many days without any information. Besides
difficulties with the dataset itself, other challenges include the facts that students
do not follow strict schedules, for example, they work on weekends regularly
complicating the day type classification and that students might work or take
classes in different buildings or offices, share offices or other spaces infrequently,
etc and none of this is known a priori. Further, the dataset contains various types
of students (undergraduate, graduate), which may follow different routines.

The paper is organized as follows. Section 2 presents the data set and high-
lights its inherent challenges. Section 3 describes our approach. Experiments and
results are discussed in Section 4. Conclusions are given in Section 5.

2 Sensing Activity with Mobile Phones

The most widely deployed and used mobile computing device today is the mo-
bile phone [11]. Current mobile phones can capture data related to the daily
routines of large numbers of people over a large period of time. More specifi-
cally, their locations, such as being at work or home, can be captured from cell
tower connections. Interactions can be captured by Bluetooth, which detects
other Bluetooth devices within a small radius. Phone call and SMS activities
can further be recorded. Phone application usage can be saved including the
camera, calendar, games, and web browser usage [2]. Finally, content, including
photos and video, can also be collected [9]. From the potential options, in this
paper we examine both location and Bluetooth data.

Recent work has been done using coarse-grained Global System for Mobile
communications (GSM) data from mobile phones to recognize high-level prop-
erties of user mobility (walking versus driving), as well as daily step count for a
very small number (3) of users over the course of one month [11]. Both coarse
and fine-grained location systems have been used to perform location-driven ac-
tivity inference [11,12]. In work by Eagle and Pentland [13], which is the closest
to ours, student type affiliations are determined by clustering location informa-
tion aggregated over a period of nine months. All of the works described used
location-driven activity inference. In this work, we investigate the student-type
task considering proximity-driven inference, in addition to location-driven in-
ference. Further, we investigate an additional task of day type classification. In
addition, we evaluate several representations for the dataset, inferring class types
from single days of data, as opposed to aggregated intervals of data.

There are many challenges and sources of noise inherent in mobile phone data.
They can be forgotten, turned off, or out of battery. There are also issues with
cell tower connections such as poor indoor reception and fluctuating connections.
Bluetooth errors include detection between certain types of walls, recording peo-
ple who are not physically proximate. There is also a small probability Bluetooth
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will not discover other proximate devices [2]. Further, ground truth collection
is a difficult task especially over long periods of time. Users labeling is often
incomplete, unclear and often unavailable, sometimes due to privacy concerns.
All these issues lead to noisy, partly incomplete and partly inaccurate data with
very little ground truth to rely on.

We use the Reality Mining dataset [2], collected by N. Eagle at MIT. The
activities of 100 subjects were recorded by Nokia 6600 smart phones over the
2004-2005 academic year. This comprises over 800 000 hours of data on human
activity; if we take into account the location, proximity, and phone call informa-
tion, this corresponds to over 2 million hours of collected data. This dataset has
been built respecting the privacy concerns of individuals in the study. The sub-
jects in the study are students and staff of MIT that live in a large geographical
area covered by over 32000 cell towers. They work in offices with computers that
have Bluetooth devices which can sense in a 5-10m radius [2]. The public location
information available for all subjects in the study includes the cell tower ID, as
well as the date and duration of connection. All of the subjects labeled the cell
tower ID’s which correspond to their homes. We obtained a list of MIT work cell
towers which correspond to the Media Lab and the Sloan Business school. The
Bluetooth proximity data collected contains the IDs of two proximate devices
as well as the date and duration of interaction. The list of work cell tower IDs
obtained from MIT was incomplete as many students never connected to any
of the cell towers in this list and thus were never considered to be at work. To
resolve this issue, additional work labels were inferred from being in proximity to
each person’s computer; we did not consider being in proximity to one’s laptop
as being at work due to the mobile nature of the device. We assign a location
label of HOME(H), WORK(W), or OTHER(O) to the 32000 cell towers. Towers
which are not labeled as H or W are categorized as O. We have a fourth location
label, NO RECEPTION(N), when there is no tower connection recorded for a
person for a given time (eg. no battery, phone off or no reception).

3 Classifying Daily Routines

We address two classification tasks for daily routines: weekday vs. weekend rou-
tines, and engineering student-like vs. business student-like routines. In both
cases, the input data is one day of location and/or proximity information.

3.1 Data Representation

The goal is to represent a day using location and proximity information that is
discriminant to daily pattern classification. A day can be represented at multiple
time scales, and people’s routines usually follow block-type schedules. In this pa-
per, we quantify location and proximity information at two levels (one fine-grain
at 30 minutes and one coarse-grain at 3-4 hours). These two time scales provide
a simple model of time management that is appropriate, in our opinion, to char-
acterize many people’s lives. For location data, keeping in mind the H, W, O, N
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Fig. 1. a) Visualization of location patterns using the fine-grain location representation,
La, for 2 users over 121 days. Each row in the graph represents a day in the life of
the individual. The labels H, W, O, N represent home, work, other, and no reception
respectively. The day is divided into 48 fine-grain (30 minute) timeslots, each with a
location label. The user on the left has a rich set of routines visible in the location
patterns, whereas the user on the right is mostly incomplete due to lack of celltower
labels. b) The proximity representation, Pb, is visualized for a user. Only proximity
with users in the group are considered. Each row in the graph represents a day in the
life of the user. The day is divided into 8 timeslots, each with 3 elements indicating the
quantity of proximate users for that timeslot. For this user, most proximity activity
occurs later in the day for most days.

labels, in addition to time considerations, useful information may be contained
in the quantity of these locations present in a day, or the dynamics in which
they occur (for example, work often follows home). Further, for proximity data,
sources of useful data include the identity of the person with whom a user was
proximate, the number of proximate people (quantity of proximity disregarding
the user’s identities), as well as time considerations. These features motivated
the various location-driven and proximity-driven representations presented next.

Location Representation

La Fine-Grain Location. For the fine-grain location representation, visualized
in Figure 1 and 2 a), a day is divided into 30 minute non-overlapping time
intervals, resulting in 48 blocks per day. We assign a location label of W, H,
O, or N to each 30 minute block. For classification purposes, this 48 element
vector was transformed to binary format. Note that over a 30 minute inter-
val, typically several cell tower connections are made, often with continuous
fluctuations between a few. To address this source of noise we select the cell
tower with the maximum connection time over each 30 minute interval.

Lb Bag of Location Transitions. This representation was built from the fine-
grain location representation considering 8 coarse-grain timeslots in a day.
A location word contains 3 consecutive location labels presented for the fine-
grain representation corresponding to 1.5 hour intervals followed by one of
the 8 timeslots in which it occurred. Thus a location word has 4 components,
3 location labels followed by a timeslot. We take overlapping 1.5 hour sets
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(a)

(b) (c)

Fig. 2. a) Fine-grain location representation, La, visualized over the entire set of days
and users in the study. The x axis corresponds to the 48 half hour time intervals in a
day. The y axis corresponds to a given day of a user in the dataset. b) Coarse-grain
location representation, Lc, visualized over all days and users. c) UserID proximity, Pa,
displayed over all users and days.

of labels to make a location word, so that if we had a pattern HHHOW
in timeslot 1, we would have the following location words: HHH1, HHO1,
and HOW1. The bag of location transitions is the histogram of the present
location words in the day.

Lc Coarse-Grain Location. For this representation, visualized in Figure 2 b),
a day is also divided into 8 coarse timeslots. For each timeslot, there is a
binary element representing the four location labels (H, W, O, N). If one of
these labels was present within the given timeslot, it is counted as one, if
this location was not present, it is counted as zero. This is a simplification
of the bag of location transitions, in which the dimensionality was reduced
to be comparable to some of the proximity representations described in the
next subsection.

Ld Two-Feature Location. This representation is the simplest, in which the num-
ber of 30-minute H and W labels are counted without taking into account
when exactly they occur in a day.
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Proximity Representation

Pa UserID Proximity. The userID proximity representation is also illustrated in
Figure 2 c). There are 31 binary components for a given day, reflecting the
30 people considered in this study (see Section 4.1), and the last component
for the case when no one is in proximity. If the person was in proximity with
one of the 30 individuals, the value for that component will be one; for days
when the person is not in proximity with anyone, the last component will
be one. Thus, we only consider proximity within the set of 30 people. We do
not consider a person to be in proximity with oneself.

Pb Coarse-Grain Proximity. The coarse-grain proximity representation, visual-
ized in Figure 1 b), contains again the same 8 timeslots in a day. In this
description of proximity, the identities of people are disregarded and only
the quantity of proximate people for a timeslot is considered. In the first
timeslot, the first element is one if 1 to 2 people are in proximity, the second
if 3 to 4 people are, and the last if 5 or more people are in proximity. The
resulting representation contains 8 timeslots, each with 3 elements. This idea
of binary quantization is repeated over the 8 timeslots giving a quantification
of interaction within the total set of people over different times in the day.

Pc One-Feature Proximity. This is the simplest representation for proximity. We
count the number of proximate people for a person within a day, and use
this value.

Combined Representation. For the combined representation, we concatenate
one of the location representations with one of the proximity representations. In
this paper, we only consider cases with comparable location and proximity di-
mensionality. Feature extraction techniques (e.g. PCA) could have been applied
on the joint representations but were not explored here.

3.2 Classification

The classification was performed using a support vector machine (SVM) with a
Gaussian kernel. For both daily routine classification tasks (days as weekends or
weekdays, or days as belonging to business students or engineering students), the
training strategy was leave-one-user-out, specifically testing on all the days for
one unseen person while training on the data for all other people (note: proximity
features are by definition relational involving pairs of people); we tested on each
of the people and averaged the results. We optimized the kernel parameter on
one data split for a randomly chosen person.

4 Experiments and Results

4.1 Data Set

From the Reality Mining data set, we experimented with 30 people and 121
consecutive days, resulting in approximately 3600 data points. Our choice was
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guided by the goal of analyzing people and days for which data was reasonably
available. The exact dates in the experiment were August 26, 2004 to December
24, 2004. The people selected had the most number of days with at least one W or
H label. We removed days which were entirely N (no reception) labels since these
had no useful information, which resulted in approximately 2800 data points. To
select the interval of 121 days, we found the time interval with the most number
of useful days (i.e., days with W, H, or O labels) over all 30 people. The resulting
subset is still massive, amounting to over 87 000 hours, or about 10 years of data,
and remains quite challenging in terms of noise, incompleteness, and complexity.
This is illustrated in Figure 2 where it might be very difficult for a human to
differentiate days as weekends/weekdays, or whether the day corresponds to a
business student or engineering student.

For the student-type daily routine classification task, a subset of 23 of these 30
people were considered based on their student type labels. There were 6 business
school students, and 17 engineering students. The engineering students covered
a broader scope, including both undergraduate and graduate levels.

4.2 Weekday/Weekend Routine Classification

The weekend/weekday classification results are presented in Table 1 and reveal
the difficulty of the task solely based on location or proximity information. In
each table, the classification accuracy averaged over all people is presented first,
and the average accuracy for each class is presented later. Generally, weekdays
are more easily identified with location as input, and weekends are charac-
terised better by proximity data. We can understand this by identifying week-
days with WORK cell towers, and weekends by not being in proximity with
colleagues. However, in this dataset, students appearing to be in W locations on

Table 1. Weekend (WE) and Weekday (WD) daily routine classification accuracy.
The top table shows the difficulty in determining weekends based on location infor-
mation alone. Proximity data is more deterministic of weekend routines. Classification
obtained by combining location and proximity results in the best performance. Signif-
icance values are shown for the most significant results.

Location Accuracy (%) Proximity Accuracy (%)
Method Overall WE WD Method Overall WE WD

La 74.2 19.3 95.3 Pa 74.3 70.7 75.8
Lb 76.8 44.1 89.1 Pb 72 54.2 78.7
Lc 76 36.6 90.8 Pc 74.6 67.9 77.1
Ld 75.7 30 93.1

Combined Accuracy (%)
Method Overall Eng Bus

(Ld,Pc) 76.9 47.35 88.1
(Lc,Pa) 80.3 65.8 85.8
(Lc,Pb) 79 53.4 89.3
(La,Pa) 76.5 60.2 82.8
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Fig. 3. Advantages of the joint location-proximity representation (Lc, Pb). Visualiza-
tion of a) weekends and b) weekdays for which the proximity-only data was misclas-
sified, but for which the location-only data and the combined proximity-location data
were correctly classified. The sparsity of the weekday proximity-only data (columns
33-56 in b)), resulted in incorrect classification since sparsity in interaction is typical
weekend behavior. However, when we added the location information, the resulting
combined representation was correctly classified. The opposite phenomena can be ob-
served in plot a), for which weekends have abundant proximity data, typical of weekday
behavior.

weekends complicate the classification task, resulting in at best 44.1% weekend
classification accuracy by the bag of location transitions (Lb), which performs
overall better than the others, also having the highest dimensionality. The coarse-
grain approach Lc (fused bag of location words) performs slightly worse for
weekends with a significantly smaller dimension. The fine-grain location repre-
sentation, La, performs the worst for WE, the best for WD, and slightly better
than the two-feature location case. All methods perform better than a ‘naive’
guess that assumes all days are weekdays, which results in 5/7 = 71.4% accuracy.

Proximity information alone is useful in characterizing weekends, but does
not perform as well as location data for identifying weekdays. There are many
weekdays with little group interaction, resulting in higher confusion with week-
days. The userID proximity and one-feature cases (Pa and Pc) reveal about 2%
difference between their weekend and weekday performances, overall resulting in
the highest performance of approximately 74%.

The lower panel in Table 1 shows the improvement in classification with the
combination of proximity and location data. Note that in all cases the over-
all performance of the joint representations improved over that of the singleton
case. We achieved over 80% accuracy with the combined representation (Lc, Pa)
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trading-off 2-3% weekday accuracy for improved weekend classification. In Fig-
ure 3, we visualize the days for which the proximity-alone data (columns 33-56)
was misclassified, however when we added the location data (columns 1-32),
the resulting 56-component vectors were correctly classified. In both figures, the
first 32 columns visualize the location representation Lc and the last 24 columns
illustrate the proximity representation Pb, so each row displays a day of the
combination (Lc, Pb). Figure 3a) are weekends which performed incorrectly for
proximity-alone data due to the abundance of proximity interactions, which are
not typical of weekends. In contrast, Figure 3b) shows weekdays which were
mistaken for weekends due to the sparsity in interactions, not typical of week-
days. The addition of the location information in both cases resulted in correct
classification, thus illustrating cases for which the combination of information
improved classification performance.

The performance difference between the best location only method (Lb) and
the best combined method (Lc, Pa) is statistically significant at the 1% level.
The same is true for the performance difference between the best proximity only
method (Pc) and the best combined method (Lc, Pa).

4.3 Business/Engineering Student Routine Classification

Effectively classifying daily routines as belonging to business students or en-
gineering students based on proximity-only observations was representation-
dependent. Proximity representation Pc, the one-feature case, was inadequate
in differentiating between student types, suggesting that the overall quantity of
proximity within each group is on average the same. If the business students
had much more proximity within the total set of people, or vice versa, we could
expect the one-feature case to have higher accuracy. The coarse-grain proxim-
ity representation Pb improved the accuracy of business student classification,
however, the userID proximity representation proved to be the best, with al-
most 99% accuracy in engineering student classification and 61% for business
students. The knowledge of identity from proximity is the key for discriminating
student disciplines.

Location knowledge was inadequate in student type determination for the
most part. This is likely due to the simplified representation used where the
32 000 cell tower IDs have been reduced to four location classes. It is expected
that a representation more precisely identifying the location of a student would
perform better. However, the representation used here is useful in understanding
whether student types differ in the amount of time spent at school, home, or out
and about. The two-feature location case, Ld, having low accuracy, indicates
that the amount of time spent at school and home is not indicative of student
type. The most effective characteristics in differentiating, which can be observed
by the highest performance with the bag of location transitions representation,
might be patterns of “going to work” in a timeslot, or “coming home” in a
timeslot, or other similar routines which are captured by this representation.
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Table 2. Engineering (Eng) vs. Business (Bus) student daily routine classification
results. Proximity within the specific group is most representative of student type,
especially when student identity is retained. The joint location and proximity data
improves classification performance for the (Lc, Pa) combination. However, the other
combinations generally perform as well as the singleton cases. Significance values are
shown for the most relevent results.

Location Accuracy (%) Proximity Accuracy (%)
Method Overall Eng Bus Method Overall Eng Bus

La 66.8 90.4 0 Pa 89.1 98.9 61.2
Lb 74.54 94.3 19 Pb 78.1 96 28.1
Lc 74.5 94.8 17.1 Pc 50.2 95.3 0
Ld 74.8 99.6 4.5

Combined Accuracy (%)
Method Overall Eng Bus

(Ld,Pc) 73.3 97.6 4.5
(Lc,Pa) 89.6 99 62.9
(Lc,Pb) 78.76 93.4 37.4
(La,Pa) 84.5 95 54.7

The performance difference between the best location only method (Ld) and
the best combined method (Lc, Pa) is statistically significant at the 1% level.
The performance difference between the best proximity only method (Pa) and
the best combined method (Lc, Pa) is not statistically significant.

5 Conclusion

We presented a method to classify daily life routines from massive, complex
data collected with mobile phones. Using over 87 000 hours of data, we achieved
over 80% accuracy in identifying whether a given day more closely resembles a
weekend or weekday. This is not an easy task as students spend many weekends in
work locations and have many weekdays with few group interactions. We showed
that the integration of location and proximity data performed significantly better
than the single observation sources, and that using representations that consider
multiple time scales was beneficial. We further succeeded in identifying whether
a user is an engineering or business student with over 89% accuracy based on a
single day pattern of activity. The identity of individuals, measured by proximity,
was key in this case, which confirms that social context is very helpful to identify
people’s routines. We plan to further exploit this concept for other daily routines
relevant for the analysis of mobile social networks.
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Abstract. Previous research has shown that speech disfluencies - speech
errors that occur in spoken language - affect NLP systems and hence need
to be repaired or at least marked. This study presents a hybrid approach
that uses different detection techniques for this task where each of these
techniques is specialized within its own disfluency domain. A thorough
investigation of the used disfluency scheme, which was developed by [1],
led us to a detection design where basic rule-matching techniques are
combined with machine learning approaches. The aim was both to reduce
computational overhead and processing time and also to increase the
detection performance. In fact, our system works with an accuracy of
92.9% and an F-Score of 90.6% while working faster than real-time.

1 Introduction

One major problem in natural language processing (NLP) systems is that they
get confused when processing spoken language. This is because of speech disflu-
encies - speech phenomena that are based on the incrementality of human speech
production [2]. In fact, 5% - 15% of our speech is disfluent in the form of corrections
(1), filled pauses (2), disruptions (3) or even uncorrected sentences (4).

(1) I want to go to Alex, no, to Joe.
(2) Uh, I want to go to Joe.
(3) I want to.
(4) I want to gone to Joe.

These disfluencies decrease the performance of ASP systems. [3] quantified
the influence of disfluencies on data-driven parsing of spoken language and his
experiment showed that ”the parsing performance is increased when disfluen-
cies are removed prior to parsing”. [4] observed the effect of uncleaned speech
disfluencies on N-gram models and described an increased perplexity of the N-
gram models which were built on the uncleaned speech material. For cost and
time reasons, disfluency detection and correction could be done via an automatic
system that is placed right behind a speech-to-text (STT) system (see figure 1).

The scheme of the disfluency types this study is based on was developed
by [1] as part of the AMI project and is explained in detail in section 2. AMI

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 185–195, 2008.
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Fig. 1. Speech to ASP with Disfluency Detection

stands for Augmented Multi-party Interaction and is a multi-disciplinary research
project to “develop technology to support human interaction in meetings and to
provide better structure in the way meetings are run and documented” [5]. The
meeting scenario is focused on business meetings with four participants whose
task is to design a remote television control. All meetings are held in English and
the uncontrolled and natural-like environment produce very good reflections of
what happens in real meetings (including speech disfluencies). More details of
the corpus possessed by the project and the available disfluency annotations is
given in section 3.

1.1 Related Work

A number of researchers published different techniques to detect disfluencies. [6]
developed a TAG-based approach (TAG - Tree Adjoining Grammar) combined
with a noisy channel model and yielded results of 79.7% F-Score on the Penn
3 disfluency-tagged Switchboard corpus. Later on, [7] extended this approach
with a maximum-entropy reranker and manually written deterministic rules and
outperformed all state-of-the-art systems in the RT-04F evaluation task. The
idea of writing lexical rules for the detection of disfluencies was also followed by
[8] who gained competitive results. Additionally, many studies trained machine
learning algorithms to recognize disfluencies on lexical [9] as well as on prosodic
features [10] and gained equally good results. [10] claimed that combining lexical
and prosodic features would result in a system that would outperform both.

1.2 Hybrid Approach

The present work continues these studies in the way that our invented system
copes with a broader set of disfluency types. The observed heterogeneity of the
disfluencies led us to the assumption that such a system should be designed
in a hybrid way which means that each disfluency should be detected by a
special detection technique that was fine-tuned for this disfluency domain. These
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individual techniques should be combined, resulting in a system that is able to
cope with more disfluency types than the individual systems. Additionally, this
design leads to a reduced computational overhead and an improved detection
performance. Both implementations of the individual techniques as well as of the
hybrid system are presented in section 4. The results of the detection systems
are contrasted and discussed in the sections 5 and 6.

2 Disfluency Scheme

Disfluencies are “syntactical and grammatical [speech] errors” [1] that occur in
spoken language and are present in nearly every conversation. This is based
on the incremental speech building process in human articulation [11] and the
impossibility to take back already uttered words [12]. [10] found out that between
5% - 10% of our speech is disfluent and, in fact, our corpus contains about 15%
erroneous speech material which can be justified by our broader annotation
scheme, invented by [1].

The common structure of a disfluency consists of three regions: The Reparan-
dum which contains the erroneous speech material, an optional medial region
which is called Interregnum and the repairing part called the Reparans. [1]
states that not all disfluencies fit into that scheme and hence splits up her clas-
sification scheme into what she calls simple and complex disfluencies. Simple
disfluencies consist only of erroneous speech material while complex disfluencies
fit into the common structure. Furthermore, she considers types of disfluencies
where the annotator (or the system) has to insert new speech material to gain
the speakers intended utterance. She calls them Uncorrected disfluencies as they
are grammatical errors which were left uncorrected by the speaker.

Table 1. Overview of all Disfluencies used in this study

class abbrev. example

Hesitation hesit This uh is an example.

Stuttering stutter This is an exa example.

Disruption disrupt This is an example and I

Slip Of the Tongue sot This is an y example.

Discourse Marker dm Well, this is an example.

Explicit Editing Term eet This is uh this is an example.

Deletion delete This really is this is an example.

Insertion insert This an this is an example.

Repetition repeat This is this is an example.

Replacement replace This was this is an example.

Restart restart We should, this is an example.

Mistake mistake This be an example.

Order order This an is example.

Omission omiss This is [ ] example.

Other other
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Finally, she created a finely granulated classification scheme including 15 dif-
ferent classes which are listed in table 1. It shows the abbreviations of these
classes and examples that help in the understanding of the particular meaning
of the disfluency types. The disfluencies whose name is written in italics are of
the simple structure and the rest are complex disfluencies. The disfluency types
Mistake, Order and Omission are in fact the previously mentioned Uncorrected
disfluencies.

3 AMI Corpus

The aims of the AMI (Augmented Multi-party Interaction) project are to de-
velop technology to support human interaction in meetings and to provide bet-
ter structure in the way meetings are run and documented [5]. To fulfill these,
the project possesses a speech corpus with more than 100 hours of four person
project meetings. These meetings are all held in English and the task of the
particular participants is to design a television remote control. Next to the tran-
scribed speech of the participants, the corpus offers different annotation layers
that contain a variety of information (e.g., dialog acts, extractive summaries,
ASR output, topics, . . . ).

28 out of the 135 meetings are annotated with our disfluency scheme. The de-
tailed distribution of all classes and the separation in training set and evaluation
set are shown in table 2. It is noticeable that the top five disfluencies cover 75%
of all appearing disfluencies, which makes them important in the detection task.
We split the disfluency corpus into an 80% training set and 20% evaluation set
which corresponds to an amount of 10.19 and 2.79 hours meeting time. Despite
this, our investigation of the disfluency annotated corpus showed that nearly 15%

Table 2. Distribution of disfluency classes in the corpus

TRAIN EVAL SUM % kumul. %

hesit 3472 1038 4510 28.67 28.67

repeat 2038 360 2398 15.24 43.92

dm 1981 256 2237 14.22 58.14

disrupt 1389 203 1601 10.18 68.32

sot 928 214 1142 7.26 75.58

omiss 871 82 953 6.06 81.63

mistake 703 61 764 4.86 86.49

stutter 537 123 660 4.20 90.69

restart 502 97 599 3.81 94.49

replace 319 50 369 2.35 96.84

eet 141 19 160 1.02 97.86

insert 117 25 142 0.90 98.76

other 107 6 113 0.72 99.48

order 67 7 74 0.47 99.95

delete 6 2 8 0.05 100.0



Hybrid Multi-step Disfluency Detection 189

Table 3. N-gram Corpus Statistics

N OOV PP

1 3.47% 1181.85
2 27.13% 2674.26
3 80.17% 33310.79
4 95.35% 86872.62

of all words are disfluent and 40.5% of all dialog acts contain at least one disflu-
ency. Taking into account that these disfluencies would confuse an NLP system,
this is quite a huge amount and we will see that our system is able to decrease
this. The structure of the disfluencies allow the embedding of other disfluencies
but we found out that most of them have either no parent disfluency or just one.
The deepest layered disfluency has five parents. Furthermore, we analyzed the
length of the disfluencies and about 95% of all simple disfluencies consist of one
or two words and the most complex disfluencies have an average length of two
to ten words. The longest disfluency - a Disruption - contains 24 words.

Additionally, some features for the machine learning approach need N-grams
which had to be build on fluent speech material. Therefore, we calculated these
N-grams out of the disfluency annotated - and cleaned - training part of the
corpus which contains 3760 unique words. As this is a relatively small corpus for
the estimation of statistical word probabilities, we were not able to gain the best
out-of-vocabulary and perplexity results (see table 3). Therefore, a corpus with
more material is definitely preferable and would lead to better performances.

4 Hybrid Detection System

The disfluency detection system is composed of different individual classification
methods. Each method is responsible for a subset of disfluency classes and is fine-
tuned based on this. In fact, we have two different subsets and hence two different
detection approaches.

4.1 Rule-Matching Approach

The rule-matching based approach detects disfluencies of the types Hesitation,
Stuttering and Repetitions and uses regular expressions as well as simple word
matching techniques. We will see that these techniques are very strong and lead
to no performance loss while transferring them from the development environ-
ment into the hybrid system.

4.2 Machine Learning Approach

The machine learning approach is implemented with the help of the freely avail-
able WEKA toolkit [13] which contains many state-of-the-art machine learn-
ing algorithms and a variety of evaluation metrics. Furthermore, it allows for
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the adaption of other algorithms due to its simple interface. Disfluencies of the
classes Discourse Marker, Slip of the Tongue, Explicit Editing Term, Restart,
Replacement, Insertion, Deletion and Other are detected by a machine learn-
ing approach that performs a word-by-word detection. In general, we have four
different types of features: lexical, prosodic, speaker-related and dynamic.

Lexical features are estimated on the word-layer and consider also the POS
tags of the particular words. Next to the absolute words, we use some relative
lexical features that describe the lexical parallelism between the current word
and its neighbors. As [10] describes, prosodic features are well suited for the
disfluency detection task and hence we use them as well. The term prosodic
means, in this context, features that describe the duration, energy, pitch pauses
and velocity of the words. The duration and pauses features are calculated di-
rectly from the word-boundaries as annotated in the corpus. The velocity of a
single word is defined by its duration divided by the number of syllables. For
the energy- and pitch-based features, we have 10 ms frames available for each
channel of a meeting. As these raw values cannot be used directly, we first had
to normalize them globally, based on each channel to eliminate the influence of
the microphones. After that, we computed the features on a word and a sub-
word level. The speaker-related features describe the speakers role, gender,
age and native-language as we found a correlation between these characteristics
and the rate of disfluent words. The last type of features are the dynamic fea-
tures that are generated during the process of the classification and describe the
relationship between the disfluency type of the ongoing word to its neighbors.

4.3 Hybrid Design

Figure 2 shows the schematic drawing of the architecture that has been devel-
oped. There we can see that both the rule matching subsystem and the machine
learning approach work on the data for itself instead of a combined solution
where both approaches process the data in parallel. In the first step, the rule-
matching system processes the speech material until no more disfluencies can
be found. After that, the system’s state advances to the machine learning ap-
proach where the remaining types of the disfluencies are marked. If this subsys-
tem found any disfluencies, the speech material gets directly re-inserted into the
rule-matching system. If not, the labeled stream or the cleaned speech material
is made available for a possible subsequent NLP system.

When developing the hybrid system, the first step after the implementation
of the particular subsystems was to decide how to arrange both approaches.
The presented architecture emerged from a set of different design ideas that
were all evaluated on the evaluation part of the corpus. The particular ideas
differed in the way both subsystems were placed and in the way the speech was
carried through them. In all design steps, we focussed our attention on keeping
the precision as high as possible, because wrongly disfluent marked words have
more of a bad influence on the meaning of the sentence than wrongly fluent
marked ones.
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Fig. 2. Design of the hybrid System

5 Experimental Results

This section first describes the evaluation of our experimental results for the
individual classification systems with the results that were gained in the de-
velopment setting and after that the results for the hybrid system where all
individual classification methods are combined to create the final architecture
as shown in figure 2. The metrics are estimated on a per-word matching of the
classified and the corpus-based labeling. As we do not want to present Preci-
sion, Recall and F-Scores for all different classes, we combined the results for all
classes by a weighted mean for each metric where the weight is the probability
of the particular disfluency type. This has the advantage that numerous disflu-
encies, which are hence more important for the detection approach, get a higher
rank than the less frequent ones.

5.1 Individual Results

The evaluation results of the rule-matching based approach is shown in table 4
where both the baseline and the particular results are presented. We can see that
the system works very fast (6 seconds detection time for about 10,000 seconds
of speech material) and yields a very good outcome with an accuracy of 98.75%
and an F-Score of 98.78%.

For the machine learning approach, which detects disfluencies of type Dis-
course Marker, Slip of the Tongue, Explicit Editing Term, Restart, Replacement,
Insertion, Deletion, Disruption and Other, we tried several machine learning al-
gorithms to gain the best suited one for this task and, in fact, the Decision
Tree implementation from the WEKA toolkit outperformed all others. We can
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Table 4. Results of Rule Matching

Baseline RuleMatcher

Evalinstances 25449

Evaltime – 6 sec

Accuracy [%] 93.29 98.75
avg. Precision [%] 87.09 98.78
avg. Recall [%] 93.29 98.75
avg. F-Score [%] 90.08 98.76

Table 5. Results for the Machine Learning Approach

Baseline DecisionTree

Traininstances 98562

Evalinstances 24728

Traintime – 20:41 h

Evaltime – 7 sec

Accuracy [%] 96.09 97.34
avg. Precision [%] 92.34 97.15
avg. Recall [%] 96.09 97.34
avg. F-Score [%] 94.17 97.24

see in table 5 that it also works very fast with good performance but needs an
immense amount of training time.

5.2 Hybrid Approach

Since we combined the two previously mentioned individual approaches, the hy-
brid approach is able to detect all their disfluency types. In addition to the
word-based evaluation metrics, we decided to calculate the amount of disfluent
dialog acts (see table 6) where a disfluent dialog act is a dialog act that contains
at least one disfluency. In our evaluation set, 64% of the dialog acts contained
disfluencies with 12.5% of disfluent words. These are the baselines for the partic-
ular evaluation metrics which are listed in table 6. There, you can see that our

Table 6. Performance of hybrid Detection and Correction System

Word Level DA Level

Baseline [%] Result [%] uncleaned [%] cleaned [%]

Accuracy 87.5 92.9 fluent 64.3 77.3

Precision 78.4 90.6 disfluent 35.9 22.7

Recall 89.6 90.5
F-Score 83.6 90.6

Real Time 2:47 h

Processing Time 1:10 h
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hybrid approach is able to label 92.9% of all words correct which means that it
detects more than 56% of all disfluencies. Furthermore, after cleaning the dialog
acts of the found disfluencies, the amount of fluent dialog acts increased to more
than 77%.

The processing time increased to 1:10 h which is justified by the multi-step
design where the transformation of the words to the instances requires a huge
amount of time for each of the steps. This could be reduced by omitting the
POS tagging by accepting a little degradation of the performance. Nevertheless,
the current system still works faster than real-time.

5.3 Detection of the Remaining Disfluency Types

So far, we excluded the detection of disfluencies with type Disruptions, Mistake,
Order and Omission from the hybrid design. Nevertheless, we tried to implement
two systems that could deal with the detection of these disfluencies and we want
to present them here as well.

The approach that should detect Disruptions was also implemented with ma-
chine learning based techniques and - for the development setting - produced very
good results. The Decision Tree outperformed all other algorithms and the par-
ticular results with the corresponding baselines are presented in table 7. Unfortu-
nately, by transferring this approach from the development setting into the final
system, it’s performance crashed and did not yield any detection improvements.

The detection of the remaining disfluencies, which are Omission, Mistake
and Order, was the most difficult task because the speaker did not produce
explicit editing terms or any other information about his/her error. A statistical
approach like the N-gram technique seemed to be a good way to gain information
about the correctness of a word-order or a possible missing/superuous word.
Unfortunately, the N-gram approach did not yield any detection improvements
which is most likely due to the small size of the available corpus. The N-gram
statistics have to be estimated on a huge text that must be fluent and from
the same context as the evaluation text. Both properties are fulfilled by the
training set but it was too small to gain useful N-gram probabilities as seen in
the perplexity and out-of-vocabulary values presented in table 3.

Table 7. Results for the Disruption Detection

Baseline Decision Tree

Traininstances 76666

Evalinstances 19653

Traintime – 10:14 h

Testtime – 4 sec

Accuracy [%] 98.99 99.23
avg. Precision [%] 98.64 99.13
avg. Recall [%] 98.99 99.23
avg. F-Score [%] 98.81 99.18
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6 Conclusions

We have described the implementation and evaluation of a hybrid multi-step
system for the detection and correction of disfluencies. We used machine learning
techniques as well as rule-based approaches. For the machine learning approach,
we estimated a variety of lexical, prosodic, speaker-related and dynamic features.
Unfortunately, we had to be aware that the detection of disfluencies with type
Disruption, Mistake, Order and Omission was not successful and therefore not
included in the final system. Despite this, we have shown that the system works
and detects and corrects the remaining disfluencies. We reached an Accuracy of
92.9% with an F-Score of 90.6%. Evaluating on the dialog act level, we were able
to clean more than 56% of all disfluent dialog acts which resulted in 77.3% clean
dialog acts.

6.1 Future Work

The next planned steps are to increase the stability of the machine learning
based approaches to ensure their performance in the multi-step hybrid environ-
ment. Additionally, we will use a larger text source for the calculation of the
N-gram statistics to give the approach for the detection of disfluencies of class
Uncorrected a better basis for the probability calculation of the correctness of
an ongoing utterance. Furthermore, another design of the hybrid approach is
thinkable where the different classification methods are used in parallel with a
particular weighting to detect whether a word is disfluent or not.
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Abstract. This paper takes a classical machine learning approach to the
task of Dialogue Act segmentation. A thorough empirical evaluation of
features, both used in other studies as well as new ones, is performed. An
explorative study to the effectiveness of different classification methods
is done by looking at 29 different classifiers implemented in WEKA.
The output of the developed classifier is examined closely and points of
possible improvement are given.

1 Introduction

Current research in the AMIDA project is focussed on a deeper understanding
of meeting discourse semantics. An important first step towards this goal is the
structuring of utterances into meaningful parts, like sentences or Dialogue Acts.
A Dialogue Act is a sequence of subsequent words from a single speaker that
form a single statement, an intention or an expression. Segmenting spoken or
written text into Dialogue Acts contributes to a better understanding of the
utterances; is the speaker for example asking something, or is he conveying a
meaning? A lot of work on DA and linguistic segmentation and DA classification
(or tagging) has already been done, on the AMI Corpus: [1], but also on other
corpora [2], [3], [4], [5] and [6]. However, this is not a closed topic yet and many
techniques still need to be explored.

The following is a Dialogue Act annotated example taken from the AMI cor-
pus, using its 15 tag tagset:

You know. (Elicit-Assessment) Yep. (Assess) Mm-hmm. (Backchannel)
I think one factor would be production cost. (Inform)

This is an example of a segmentend and tagged series of words. This paper
looks at the task of segmentation alone, where the input is the sequence of words
(without interpunction or capitalization), and the goal is to tag each word as
either a segment Start or an Internal:

you/S know/I yep/S mm-hmm/S i/S think/I one/I factor/I would/I be/I
production/I cost/I

The Dialogue Acts as used within the AMI project are defined to be uttered
by a single speaker only (no single Dialogue Act can span multiple speakers).

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 196–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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For this reason, the input for the classifier is the sequence of words sequentially
uttered per speaker.

This paper looks into stand-alone segmentation using a two-class classification
approach. It can also be seen as a sequence-based machine learning problem in
which case techniques like Hidden Markov Models, Conditional Random Fields
(CRFs) or Memory-Based Tagging can be used.

For everymachine learning task there are fourmajor aspects that can and should
be looked into. These are: features, classification method, classifier parameters and
data. This article will focus on the evaluation of features using a Bayesian Network
classifier, and takes a quick look at other classification methods.

For this project the AMI Corpus is used, which will be described first. Next, a
list of features that have been derived from the data is defined. All these features
need to be evaluated to see how useful they are. Simply using all available infor-
mation to train classifiers is not efficient. The amount of training data needed
for the classifier to automatically learn that some features, for example, con-
tain little or no information can become extremely large. Therefore a thorough
feature selection is conducted, which is described in Section 4. Experiments to
explore the influence of different classification techniques are described 5. Then,
a thorough evaluation of the final results (for Bayesian Networks) will be done,
which gives insight in the types of errors made by the classifier. This evaluation
also shows that using standard performance measures like precision and accu-
racy should not be taken too strict because of the large amount of non-harmful
errors that are made.

2 The AMI Corpus

All the data that is used in this project comes from the AMI Corpus [7]. The
largest part of the corpus (72 hours in total) are scenario-based meetings which
are covered by 35 series, totalling 138 meetings. The following split into training-,
test,- and evaluation sets has been made:

Training set: ES2002, ES2005-2010,ES2012, ES2013, ES2015, ES2016, IS1000-
1007, TS3005, TS3008-3012 (98 meetings)

Evaluation set: ES2003, ES2011, IS1008, TS3004, TS3006 (20 meetings)
Development set: ES2004, ES2014, IS1009, TS3003, TS3007 (20 meetings)

The training set contains 465.478 words, the evaluation set 106.742 words
and the development set contains 99.372 words 1. For all the words, begin- and
endtime information is available as well as the person who uttered the word
and his/her role in the meeting (either Project Manager, Industrial Designer,
Marketing Expert or User Interface designer). Also the wave signals of all the
meetings and for every participant are available, which will be used for prosodic
feature extraction. All annotations are hand transcribed.
1 For this research, the evaluation-, and development sets are switched around from

the standard AMI configuration.
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3 Definition of Features

The input for the classifier is a feature-vector for each word in the corpus. Fea-
tures are derived from the word itself, timing and prosodic information. The
types of features that have been used in other work on DA segmentation will be
used, as well as some features that are introduced here.

Next follows a list of all the features used in this project. The number (#x )
is used throughout the article to identify the feature.

3.1 Time Related Features

Features derived from the start- and end times of the words in the corpus:

– #1. Pause between the words: The duration between the starttime of
the current word and the endtime of the last word by the same speaker.

– #2. Pause nominal: A ‘boolean feature’, pause or no pause. Note that due
to forced time alignment in the AMI corpus, all small pauses between words
have been truncated to zero.

– #3. Duration of word: Self-explanatory.
– #4. Mean duration of word: The average duration of this word in the

whole training set.
– #5. Relative duration of word: The duration of the word minus the

mean duration of the word.

3.2 Word Related Features

Features derived from the words themselves.

– #6. Current word: The word itself. Because most classifiers cannot handle
String input, the feature is converted into a nominal feature for each word in
the corpus (e.g. ‘current word hello’ {Yes,No}). Only words that occur more
than 100 times are considered (452 in total)2.

– #7. Next word: The next word from the same speaker (with frequency of
100 or more).

– #8. Previous word: The previous word from the same speaker (with fre-
quency of 100 or more).

– #9. Part-of-Speech Current word: A part of speech tag given to the
current word. The word is tagged by the Stanford Part-Of-Speech Tagger3,
where the input to the tagger is the current word and the surrounding 6
words. This window of 7 words is also used in e.g. [8]. The tagger uses the
Penn Treebank English tagset, which is a commonly used tagset consisting
of 37 tags [9].

– #10. PoS Previous word: The Part-Of-Speech tag for the word preceding
the current word (Penn Treebank Tagset).

2 Experiments have shown that less frequently occuring words contain no information
on segment boundaries.

3 http://nlp.stanford.edu/software/tagger.shtml
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– #11. PoS Next word: The Part-Of-Speech tag for the word following the
current word (Penn Treebank Tagset).

– #12. #13. #14. PoS Reduced Tagset: Intuitively, a 37-tag tagset is too
fine grained for the DA segmentation task. The Penn Treebank set has been
mapped to a 6 tag set: Verbs, Nouns, Adjectives, Adverbs, WH-words and
Other. Feature #12 is the current PoS tag using this reduced tagset, feature
#13 the PoS of the previous word and feature #14 that of the next word.

– #15. #16. #17. PoS with keywords: These three features, for the cur-
rent word, previous word and next word respectively, use the reduced tagset
but extended with certain important keywords. This approach is analogous
to [3], where some words get their own tag. Preliminary experiments show
that the most important cue words for a segment border are: ‘yeah’, ‘so’,
‘okay’, ‘but ’ and ‘and ’, so these get their own tag.

– #18. Word repeat: True, if the current word is the same as the next word,
false otherwise.

– #19. Word repeat 2: True, if the current word is the same as the previous
word, false otherwise.

3.3 Prosodic Features

Features derived from the word pitch and energy information4. All values have
been normalized to the microphones.

– #20. #21. #22. Pitch Features: The minimum-, maximum- and mean
pitch respectively.

– #23. #24. #25. Energy Features: The minimum,- maximum- and mean
energy respectively.

– #26. Speechflow Past: This feature defines a ‘talking speed’ over the
current word W0 and the words W−1, W−2 and W−3. The feature is the
total time of those 4 words (including pauses in between them), divided by
the total number of syllables in the words.

– #27. Speechflow Future: The talking speed over the future 3 words: the
time of words W0 − W3 divided by the total number of syllables in those
words.

– #28. Speechflow Change: Substract feature #27 from feature #26.

3.4 Online Features

The following four features must be calculated during the classification because
their value depends on previously assigned borders.

– #29. Number of words in previous segment: Self-explanatory.
– #30. Distance (number of words) to the last segment: A counter

that keeps track how far this word is away from the last assigned border.
4 Thanks to Gabriel Murray for supplying the scripts and to Sebastian Germesin for

the word-alignment.
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– #31. Relative position of word inside segment: Analogous to feature
#30 only now the counter counts blocks of 5 words, see [10].

– #32. Time interval of current word to last segment: The total time
between the end of the last segment border and the beginning of the current
word.

4 Feature Selection Results

The goal of the feature selection phase is to see what the influence of individual
features is, as well as to see how certain combinations of features influence the
classifier performance. There are 32 different features, three of which (the word
features) are expanded to one feature for every frequently occuring word. This
makes the total feature vector 1309-dimensional. To find an optimal feature
subset within this space is computationally impossible (21309 possibilities), so the
first step is to filter out those features that contain little information. To do this,
the InfoGain Attribute Evaluator from WEKA5 is used. This method calculates
the probability of an instance being a segment border (prior probability) and
compares this to the probability of a segment border given that a feature has a
certain value. The higher the change in probability, the more useful this feature
is. The results of the InfoGain ranking top 30 can be seen in Table 1.

In the second step of the feature selection phase, a BayesNet classifier has
been repeatedly trained and evaluated with different feature subsets, taken from
the best 30 features (Table 1). Because an exhaustive subset evaluation is still
impossible to do, feature subsets are manually chosen and expanded upon, until
all options that are likely to improve the results have been tried. A total of 528

Table 1. Result of the Information Gain ranking algorithm on all features

Rank Feature Infogain Rank Feature Infogain

1 #1 0.2462 16 #8 (yeah) 0.0260
2 #2 0.2399 17 #11 0.0213
3 #4 0.2191 18 #27 0.0190
4 #5 0.1373 19 #6 (so) 0.0152
5 #26 0.1311 20 #30 0.0152
6 #32 0.1066 21 #6 (okay) 0.0139
7 #15 0.0818 22 #8 (okay) 0.0114
8 #16 0.0664 23 #25 0.0107
9 #9 0.0517 24 #17 0.0106
10 #10 0.0490 25 #6 (but) 0.0102
11 #28 0.0461 26 #6 (and) 0.0088
12 #13 0.0424 27 #12 0.0086
13 #6 (yeah) 0.0347 28 #21 0.0084
14 #29 0.0323 29 #6 (mm-hmm) 0.0084
15 #23 0.0308 30 #6 (mm) 0.0078

5 http://www.cs.waikato.ac.nz/ml/weka/
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Table 2. Best Performing Feature Subset for Bayesian Network Classifier

ID Feature

#1 Pause between the words
#2 Pause nominal
#4 Mean duration of word
#6 Current word (mm-hmm, but, yeah, so, okay, and)
#8 Previous word (okay)
#10 PoS Previous word
#11 Pos Next word
#16 Pos Previous word (with keywords)
#23 Minimum Energy
#25 Mean Energy
#28 Speechflow change
#32 Time interval of current word to last segment

experiments have been done, and the resulting best performing subset is seen in
Table 2.

This feature set achieved an F-measure of 0.75 with 0.79 precision and 0.72
recall. There are a few interesting things about this set. First, the pause and
the nominal pause (#1 and #2) seem to contribute both, even though they
are obviously correlated. Leaving one of them out lowers the performance of
the classifier. Second, the Part-of-Speech tags of the previous and next word
(#10 and #11) are selected, but not that of the current word (this doesn’t
seem intuitive). Third, in contrast to the literature, the words of the Part-of-
Speech tagset enhanced with keywords (#15, #16 and #17) are better added
as individual features, instead of incorporating it in a PoS-feature like in [3].

5 Classifier Experiments

Bayesian Networks are just one of many possible techniques for building a ma-
chine classifier. To get a quick overview of how other classifiers handle the task of
DA segmentation, a number of different classifiers have been trained and tested.
An exhaustive search in the feature - classifier - parameter space is extremely
time consuming, therefore we save time by a) using default classifier parameters
and b) use only 50.000 training instances6. Note that different classifiers may
be affected differently by size of training set, parameter optimization and fea-
ture sets, so optimally these should all be varied [11]. In these experiments, the
97 best performing feature sets7 have been fed to the different classifiers. The
results are reported for the best feature vector (F-measure) for every classifier
(see Table 3). The names of the classifiers in Table 3 refer to the names of the
WEKA classes that implement them.

6 Experiments showed that after 50.000 instances, no significant improvements in re-
sults could be noticed with a Bayesian Network classifier.

7 All scoring better than pause feature alone.
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Table 3. Classifier experiment results

Classifier F-measure Classifier F-measure

LMT 0.76 DecisionTable 0.73
J48 0.75 VotedPerceptron 0.73

NBTree 0.75 SimpleLogistic 0.73
ADTree 0.75 SMO (Poly) 0.73

SimpleCart 0.75 SMO (RBF) 0.73
PART 0.75 Ridor 0.73

BayesNet 0.75 RBFNetwork 0.73
REPTree 0.75 NNge 0.70

... ... ... ...
Logistic 0.73 HyperPipes 0.27

Many of these classifers perform in line with the Bayesian Network classifier,
whereas the variance in results is much larger when changing the feature set.
This shows that changing the classification method is far less significant than
optimizing features. It is unclear whether any of the classifiers score significantly
better than the BayesNet classifier, but because this is only an exploratory ex-
periment we don’t worry about that now and continue the experiments using
Bayesian Networks.

6 Evaluation

In order to determine how good the results are, they are compared to a baseline
and a theorized top score, both based on the intrinsic properties of the task. The
baseline is defined by a least-effort method. The ‘maximum achievable score’ is
based on the intrinsic vagueness of the Dialogue Act problem by looking at the
inter-annotator confusion analysis of Dialogue Act segmentation in [1]. The least
effort, or baseline classifier consists of a single rule: if there is a pause between
two words, the second word is the start of a new Dialogue Act. See Table 4 for a
summary of the results 8.

To answer the question how good a 0.05 improvement on the baseline is, we
must hypothesize a roof for the results. The best score we can expect from an

Table 4. Result overview for evaluation- and test set, including baseline, using
BayesNet classifier

Set Instances Acc. Prec. Recall F NIST-SU

Development 99372 0.93 0.79 0.72 0.75 0.47
Evaluation 106742 0.92 0.79 0.72 0.76 0.47
Baseline 106742 0.92 0.97 0.55 0.70 0.47

8 The added “NIST Sentence-like Units” error metric is used in many other publica-
tions. It is the total number of false positives and false negatives, divided by the
total number of boundaries in the reference data.
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Table 5. Recall/Precision and average F-score values for inter-annotator segmentation

dha dha-c mar s95 s95-c vka Avg. F-score

dha – 0.91 0.93 0.84 0.92 0.91 0.86
dha-c 0.93 – 0.94 0.84 0.92 0.91 0.87
mar 0.77 0.79 – 0.76 0.80 0.86 0.85
s95 0.81 0.83 0.89 – 0.85 0.87 0.82
s95-c 0.89 0.91 0.94 0.85 – 0.92 0.87
vka 0.72 0.74 0.83 0.72 0.75 – 0.82

Total average F-score: 0.85

automatic Dialogue Act segmenter depends on how “vague” a segment boundary
is defined, or what the intrinsic difficulty of the task is. As a best possible score
we take the results from [1] on inter-annotator confusion analysis. Table 5 shows
the recall/precision values between two different annotators if one is taken as
the gold-standard and the other as the “classifier output”. The table is based on
the IS1003d meeting which has been annotated by four different annotators.

The last column for each row contains the average F-measure for the annotator
on that row with all the other annotators. The total average F-score for all
annotator pairs is 0.85. This can be seen as a maximum achievable score. Note
that the argument that a classifier is capable of learning through noise, and thus
perform better may be true, but this is not reflected in F-score. Most importantly,
this puts our results of around 0.76 into perspective: on a scale from 0.70 to 0.85,
we’re achieving only one third of what is possible!

6.1 Detailed Error Analysis

To pinpoint where we can improve the performance of our classifier, and see how
representative the F-score measure is for this taks, we take a look at the output
it produces. Because the definition of a Dialogue Act is not perfectly defined,
some of the output may mismatch that of the gold standard, but could still be
considered correct. Table 6 lists the words that are most frequently incorrectly
classified.

It is interesting to see that the words ‘yeah’, ‘so’, ‘okay’, ‘but ’ and ‘and ’ that
have previously been proved to be useful features, now all occur in the top 6 of
most frequently occuring errors. They all have word-error percentages between
20% and 35% and the six words make up 42% of the total amount of errors made
by the classifier. The first 20 words cover 70% of the total errors, while the other
30% is covered by 507 other words. This shows that a large improvement can
be gained by looking at a small number of words. Therefore, we take a closer
look at the 6 words that cause 42% of the errors. We distinguish between errors
that are not actually harmful, like not splitting up an “um - yeah” into two
segments, and real errors like not to make the split in “...we’ll discuss that - and
then I just wanna mention some new project requirements...”. For the following
6 words, the results of 100 false positive, and 100 false negative error cases were
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Table 6. Word error distribution (evaluation set)
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and 2160 761 35% 531 (24%) 230 (11%) 719 680
yeah 3437 675 20% 629 (19%) 46 (1%) 2640 122
i 2471 552 22% 82 (3%) 470 (19%) 472 1447
so 1667 470 28% 395 (24%) 75 (4%) 1003 194
okay 1303 410 31% 393 (30%) 17 (1%) 823 70
but 975 322 33% 274 (28%) 48 (5%) 603 50
um 1205 290 24% 126 (10%) 164 (14%) 375 540
uh 2980 268 9% 42 (1%) 226 (8%) 333 2379
you 2359 219 9% 18 (0%) 201 (9%) 118 2022
we 1677 196 12% 9 (1%) 187 (11%) 72 1409
it’s 1076 177 16% 29 (2%) 148 (14%) 166 733
that’s 727 163 22% 42 (5%) 121 (17%) 112 452
the 4753 145 3% 13 (0%) 132 (3%) 121 4487
or 681 137 20% 17 (2%) 120 (18%) 57 487
it 2157 117 5% 1 (0%) 116 (5%) 85 1955

closely examined. For every word, some basic cases or rules are identified that
could help in improving the segmenter.

The ‘and’ case: For the false positives, 29% of the errors were not considered
harmful. All non-harmful cases can be described as belonging to the following
class:

– Disfluency class: cases were the word is preceded by a disfluency (“um”,
false start, etc...). The classifier and gold standard segmentation often do not
agree on whether the disfluency is part of the previous or the next segment
(or is a segment in itself). For example: “...I mean fr - and from the point
of view ...”, where the classifier seperates the false start, but the annotator
did not.

The remaining real errors largely corresponded to one of the following two classes:

– ‘And such and so’ class: cases of “... and such”, “... and so on”, “... and
stuff”. In these cases, there probably should not be a boundary.

– ‘Fruit and Vegetables’ class: most of the false positives are related to
splitting a summation of items into two segments, like: “[research] and [de-
velopment]”, “[my brother] and [my dad]”, “[up] and [down]”. But some of
the examples are a bit more complex, like: “[the actual lcd] and [maybe to
a certain extent the joystick]”.
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The ‘yeah’ case: Looking at the examples for ‘yeah’ is unfortunately quite
uninformative most of the times.

The ‘I’ case: Approximately one third of the FP’s can be seen as non-harmful
and can be categorized in the same “disfluency class” as for the ‘and’ cases. For
the real errors, about 55% of the errors belong to this class:

– ‘Yeah I class’: an ‘I’ following a ‘yeah’ or sometimes an ‘okay’, as in “...yeah
I think so”. There is no pause between the ‘yeah’ and the ‘i’, so the ‘yeah’
is not just a short backchannel, but part of the statement. In this case the
‘I’ should not be tagged as boundary.

The ‘so’ case: The FN’s can sometimes be considered non-harmful because
they are close to “um’s”. For the FP’s, 47% of the errors can be seen as non-
harmful and can be attributed to the “disfluency class”. For the actual errors,
there are a few cases that could be handled differently:

– non-Consequently class: The word ‘so’ is often used as a conjunction,
like: “...so a small speaker you mean...”. These cases are likely DA segment
boundary candidates. But the word ‘so’ can also be used in other cases like
“...so far so good...”, “...i think so...”, or “...that’s so great...”. In these cases
it is far less likely to be a segment boundary.

The ‘okay’ case: Half of the FP’s can be subcategorized in the following two
classes:

– Double-positive class: 24% of the FP’s are examples where the classifier
splits a double-backchannel or “positive expression” into two, like: “...yeah
okay...”, “...right okay...” or “...okay okay...”.

– Uhm-okay class: 18% of the false positives are cases where a sort of ‘uhm’
preceding an ‘okay’ is split in two; for example: “...oh okay...’, “...uh okay
...” or “‘...hmm okay”. These are considered non-harmful errors.

The ‘but’ case: For the FN’s, 9 out of the 48 errors can not really be considered
harmful, because the ‘but’ has no real meaning. It is used as a filler/disfluency,
where sometimes it is considered as a seperate segment, and sometimes it is part
of the previous or next segment. For the FP’s, 27% can be seen as “disfluency
class”, while 21% can be categorized as follows:

– Yeah but class: For example a false split between “...yeah - but...”, “...no
- but...” or “...okay - but...”. In these cases there should generally be no
boundary.

The detailed analysis of these error cases could be used to create a rule-based
pre- or post processing system to aid the automatic segmentation methods. A lot
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of errors are produced by disfluency, so a preprocessing step to remove disfluency
could also help increase performance (see [12]).

7 Conclusion

The experiments done on DA segmentation on the AMI corpus show that rea-
sonable results can be achieved using a variety of word related, time related,
online-, and prosodic features. More importantly it is shown that there are still
quite a lot of things to be done that can possibly increase performance. The clas-
sifier experiments in Section 5 indicate that a lot of different classifiers already
perform well with default settings. Solving the search problem of a combined
optimization of feature subsets and classifier parameters could possible lead to
a significant improvement in results, as [11] points out.

Further improvements could be achieved by optimizing the feature represen-
tation. The Part-of-Speech feature, for example, has proven to be useful, even
though the tag-set has not been changed for the specific task of segmentation.
A detailed analysis of the Part-of-Speech of words near segment boundary could
lead to a better tag-set, and could possibly improve the overall classifier perfor-
mance. The same goes for all the numeric features like pause, “speechflow” and
the prosodic features, where optimal binning configurations can be found using
simple brute-force techniques, such as in [13].

The detailed analysis of frequently occuring errors in Section 6.1 could provide
a basis for a rule-based pre-processing of the data. Because the six words men-
tioned in this section make up such a large amount of the errors produced by the
classifier, more attention should definitely be put into handling these cases. Since
the words occur so frequently, there is enough data to train classifiers specifically
for these words. In combination with rules covering the identified error classes,
some improvement of the overall results can be expected.

Another important conclusion that can be drawn from the error analysis is
that disfluency in the spontaneous speech in the AMI corpus causes a lot of
gold-standard errors. These errors are not always expected to be very harmful,
but it is worth looking into a way of avoiding them. A preprocessing step to
correct disfluency errors might be very helpful for these types of errors.

Besides the abovementioned points that still need to be addressed, future
work on Dialogue Act segmentation should include features that look at the
interaction between speakers, as well as multimodal features like gaze, gestures
and movement.
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Abstract. We present a method for detecting action items in spontaneous meet-
ing speech. Using a supervised approach incorporating prosodic, lexical and struc-
tural features, we can classify such items with a high degree of accuracy. We also
examine how well various feature subclasses can perform this task on their own.

1 Introduction

Meetings tend to occur in series with regular intervals. While some meetings will be
one-off occasions, many others occur weekly or bi-weekly with more or less the same
group of participants. As a consequence, the discussion within a given meeting might
reference the discussion from a previous meeting, or describe what will happen between
the current and upcoming meetings. It is this latter phenomenon of stated action items
that we are interested in detecting in the current research. Providing a meeting partici-
pant with such action items from a previous meeting would be very useful for reminding
the individual of what needs to be accomplished before the upcoming meeting.

In this paper we describe a supervised method for detecting these action items,
presenting results on a corpus of spontaneous meeting speech. We analyze how well
prosodic, lexical, structural and speaker-related features aid this particular task.

2 Experimental Setup

In this section we describe the meeting corpus used, the relevant action item annota-
tions, and the classifier used for these experiments.

2.1 Corpora

For these experiments, we use the AMI meetings corpus [1]. The corpus consists of
about 100 hours of recorded and annotated meetings, divided into scenario and non-
scenario meetings. In the scenario portion, groups of four participants role-play in a
series of four meetings. Here we use only the scenario meetings from the AMI corpus,
numbering 138 in total, with 20 meetings used for our test set. The participants consist
of both native and non-native English speakers.

The corpus contains both hand-authored and automatic speech recognition (ASR)
transcripts. The ASR system employs the standard framework of context-dependent
HMM/GMM acoustic modelling and trigram language models, and features a word
error rate (WER) of 38.9%.

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 208–213, 2008.
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2.2 Annotation

For each meeting in the corpus, multiple human annotators are asked to write abstrac-
tive summaries of the meeting discussion. The abstract summary consists of a general
abstract section in addition to abstract subsections describing decisions, actions and
problems from the meeting. The annotators then go through the meeting transcript and
link meeting dialogue acts (DAs) to sentences within the abstract, creating a many-
to-many mapping of sentences and DAs. We can then determine which DAs represent
action items by whether or not they are linked to sentences in the actions portion of the
transcript. The instruction given to the annotators for writing the actions subsection was
to “name the next steps that each member of the group will take until the next meeting.”
There is an average of just under three action item DAs per meeting, but the number
depends greatly on which meeting in the series it is – for example, the final meetings in
each series contain few action items.

Two examples of action item DAs are given below, taken from meeting IS1003c:

– Speaker A: So you will have Baba and David Jordan you will have to work together
on the prototype

– Speaker A: and you will have next time to show us modelling a clay remote control

In these experiments we employed a manual DA segmentation, although automatic
approaches are available [3].

2.3 Classifier

The classifier used is the liblinear logistic regression classifier1. The liblinear toolkit
incorporates simple feature subset selection based on calculating the f statistic for each
feature and performing cross-validation with subsets of various sizes, comparing the
resultant balanced accuracy scores. The f statistic for each feature is first calculated
[2], and then feature subsets of size n are tried, where n equals 19, 17, 15, 13, 11,
9, 7, 5, and 3, with the n best features included at each step based on the f statistic.
The feature subset size with the highest balanced accuracy during cross-validation is
selected as the feature set for training. The logistic regression model is then trained on
the training data using that subset.

3 Features Description

Table 1 lists and briefly describes the set of the features used. The prosodic features
consist of energy , F0, pause, duration and a rate-of-speech measure. We calculate both
the duration of the complete DA, as well as of the uninterrupted portion. The structural
features include the DA’s position in the meeting and position within the speaker’s turn
(which may contain multiple DAs). There are two measures of speaker dominance: the
dominance of the speaker in terms of meeting DAs and in terms of total speaking time.
There are two term-weighting metrics, tf.idf an d su.idf, the former favoring words that

1 http://www.csie.ntu.edu.tw/ cjlin/liblinear/
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Table 1. Features Key

Feature ID Description

Prosodic Features
ENMN mean energy
F0MN mean F0
ENMX max energy
F0MX max F0
F0SD F0 stdev.
PPAU precedent pause
SPAU subsequent pause
ROS rate of speech
Structural Features
MPOS meeting position
TPOS turn position
Speaker Features
DOMD speaker dominance (DAs)
DOMT speaker dominance (seconds)
Length Features
DDUR DA duration
UINT uninterrupted length
WCNT number of words
Lexical Features
SUI su.idf sum
TFI tf.idf sum
ACUE abstractive cuewords
FPAU filled pauses

are frequent in the given document but rare across all documents, and the latter favor-
ing words that are used with varying frequency by the different speakers [9]. We also
include the number of filled pauses in the dialogue act, and the number of abstractive
cuewords. These abstractive cuewords are automatically derived from the training data.
We examine terms that occur often in the abstracts of meetings but less often in the ex-
tracts of meetings. We score each word according to the ratio of these two frequencies,

TF (t, j)/TF (t, k)

where TF (t, j) is the frequency of term t in the set of abstracts j from the training
set meetings and TF (t, k) is the frequency of term t in the set of extracts k from the
training set meetings. These scores are used to rank the words from most abstractive to
least abstractive, and we keep the top 50 words as our list of meta cuewords. The top 5
abstractive cuewords are “team”, “group”, “specialist”, “member”, and “manager.” For
both the manual and ASR feature databases, each DA then has a feature indicating how
many of these high-level terms it contains.

4 Results

Figure 1 depicts the f statistics for the features used. The most interesting result is
that the abstractive cuewords feature is by far the best single feature according to this
measure. The position of the DA in the meeting is also a very useful feature for this task.

Using manual transcripts, the optimal feature set as determined by feature subset se-
lection is comprised of only three features: abstractive cuewords, DA position in meet-
ing, and DA duration. However, with ASR there is a total of nine features selected:
abstractive cuewords, DA position in meeting, uninterrupted length, word count,
duration, tf.idf score, su.idf score, and both measures of speaker dominance.



Detecting Action Items in Meetings 211

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

FPAU
ACUE

TFI
SUI

ROS
DOM

T

DOM
D

W
CNT

UNIN
SPAU

PPAU
DDUR

TPOS

M
POS

F0SD
F0M

X
ENM

X

F0M
N

ENM
N

f s
ta

tis
tic

feature ID (see key)

manual
ASR

T
P

Fig. 1. f statistics for AMI database features

 0

0.2

0.4

0.6

0.8

 1

 0  0.2  0.4  0.6  0.8  1

FP

classifier ROC for manual
classifier ROC for ASR

chance level

Fig. 2. Classifier ROC Curves, Manual/ASR

The action item DAs tend to have higher mean and max energy, and higher max F0
and F0 standard deviation than in the negative class. They tend to occur very late in
the meeting and also later in a given speaker’s turn. They have a much longer duration,
higher word count, longer precedent pause, and shorter subsequent pause. They tend to
be spoken by the meeting participants who are more dominant in the meeting overall.
The rate-of-speech is higher, as are both term-weight scores. The number of abstractive
cuewords is dramatically higher, and there tend to be more filled pauses.

Figure 2 shows the ROC curves for both manual and ASR transcripts. The area un-
der the ROC curve (AUROC) is very high in each case: 0.91 for manual transcripts and
0.93 for ASR transcripts, with 0.50 equal to chance performance. This shows that ac-
tion items can be detected with a high degree of accuracy, and that the classification is
robust to ASR errors. This resilience to ASR errors is similar to the finding in automatic
speech summarization that summarization results do not greatly deteriorate on speech
recognition output [10,13].

4.1 Feature Subsets

Though the f statistics provide us with interesting information about the usefulness of
individual features, we would also like to analyze how particular feature classes aid the
detection of action items. We therefore separate the features into five classes: prosodic,
structural, speaker, length and lexical features. Note that we do not consider DA dura-
tion and uninterrupted duration to be prosodic features, but rather length features along
with DA word count. We then build logistic regression classifiers for each feature class
and run the classifiers over the test data. Figure 3 shows the ROC curves and the AU-
ROCs for the feature classes using manual transcripts. The structural class performs
the best, with an AUROC of 0.93. This is somewhat surprising, as the structural class
contains only two features: DA position in the meeting and DA position in the turn. The
length and lexical classes are comparable to each other, with AUROCs of 0.80, while
prosodic and speaker features are less useful on their own.

The story is much the same with ASR transcripts. Structural features again are the
best performing feature class, and all of the feature classes are robust to ASR errors.
Figure 4 shows the ROC curves and AUROCs for ASR transcripts.
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5 Discussion

It is encouraging to find that action items can be detected with a high degree of accuracy
with the given features. Even a small set of lexical and structural features can yield very
good performance. It is interesting to note that while abstractive cuewords are the best
single feature according to the f statistic, the best feature class is the structural class.
Using only information about DA position in the meeting and in the speaker’s turn is
still enough to detect the action items. Prosodic features are less useful for this task than
for speech summarization work [7,8]. While none of the prosodic features are selected
for either manual or ASR transcripts, we do however show that they perform well above
chance level when used on their own.

Related work has been carried out by Purver et al. [11,12] as part of the CALO
project, using ICSI meeting data [6]. In that research, the authors used a variety of lex-
ical, structural and prosodic features to detect not just action items in general, but sub-
classes of action items such as explicit mentions of the action item timeframe and the
action item “owner.” Like automatic decision detection [5], this work can also be con-
sidered a type of focused extractive summarization [4,10]. By extracting DAs based on
more meaningful criteria than simply informativeness/uninformativeness distinctions,
we can create structured or hierarchical summaries.

6 Conclusion

We have shown that action items can be detected with high accuracy using structural
and lexical cues. We have also described how these action items are realized in terms
of structural, lexical, prosodic, and speaker features. Breaking the features into several
classes, we have assessed the performance of each class on its own.
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Abstract. In this paper, we address the modeling of topic and role in-
formation in multiparty meetings, via a nonparametric Bayesian model
called the hierarchical Dirichlet process. This model provides a powerful
solution to topic modeling and a flexible framework for the incorporation
of other cues such as speaker role information. We present our modeling
framework for topic and role on the AMI Meeting Corpus, and illustrate
the effectiveness of the approach in the context of adapting a baseline lan-
guage model in a large-vocabulary automatic speech recognition system
for multiparty meetings. The adapted LM produces significant improve-
ments in terms of both perplexity and word error rate.

1 Introduction

A language model (LM) aims to provide a predictive probability distribution
for the next word based on a history of previously observed words. The n-gram
model, which forms the conventional approach to language modeling in state-
of-the-art automatic speech recognition (ASR) systems, simply approximates
the history as the immediately preceding n − 1 words. Although this has been
demonstrated to be a simple but effective model, the struggle to improve over it
continues. Broadly speaking, such attempts focus on the improved modeling of
word sequences, or on the incorporation of richer knowledge. Approaches which
aim to improve on maximum likelihood n-gram models of word sequences in-
clude neural network-based models [1], latent variable models [2], and a Bayesian
framework [3,4]. The exploitation of richer knowledge has included the use of
morphological information in factored LMs [5], syntactic knowledge using struc-
tured LMs [6], and semantic knowledge such as topic information using Bayesian
models [7].

In this paper, we investigate language modeling for ASR in multiparty meet-
ings through the inclusion of richer knowledge in a conventional n-gram language
model. We have used the AMI Meeting Corpus1 [8], which consists of 100 hours
of multimodal meeting recordings with comprehensive annotations at a number

1 http://corpus.amiproject.org
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of different levels. About 70% of the corpus was elicited using a design scenario,
in which the four participants play the roles of project manager (PM), market-
ing expert (ME), user interface designer (UI), and industrial designer (ID), in
an electronics company that decides to develop a new type of television remote
control. Our work in this paper is motivated by the fact that the AMI Meeting
Corpus has a wealth of multimodal information such as audio, video, lexical,
and other high-level knowledge. From the viewpoint of language modeling, the
question for us is whether there are cues beyond lexical information which can
help to improve an n-gram LM. If so, then what are those cues, and how can
we incorporate them into an n-gram LM? To address this question, we here fo-
cus on the modeling of topic and role information using a hierarchical Dirichlet
process [9].

Consider an augmented n-gram model for ASR, with its context enriched
by the inclusion of two cues from meetings: the topic and the speaker role.
Unlike role, which could be seen as deterministic information available in the
corpus, topic refers to the semantic context, which is typically extracted by an
unsupervised approach. One popular topic model is latent Dirichlet allocation
(LDA) [10], which can successfully find latent topics based on the co-occurrences
of words in a ‘document’. However, there are two difficulties arising from the
application of LDA to language modeling of multiparty conversational speech.
First, it is important to define the notion of document to which the LDA model
can be applied: conversational speech consists of sequences of utterances, which
do not comprise well-defined documents. Second, it is not easy to decide the
number of topics in advance, a requirement for LDA.

The hierarchical Dirichlet process (HDP) [9] is a nonparametric generalization
of LDA which extends the standard LDA model in two ways. First, the HDP
uses a Dirichlet process prior for the topic distribution, rather than the Dirichlet
distribution used in LDA. This enables the HDP to determine the number of
topics required. Second, the hierarchical tree structure enables the HDP to share
mixture components (topics) between groups of data. In this paper we exploit
the HDP as our modeling approach for automatic topic learning. Moreover, we
also find it easier to incorporate roles together with topics by expressing them
as an additional level of variables into the HDP hierarchy.

Some previous work has been done in the area of combining n-gram mod-
els and topic models such as LDA and probabilistic latent semantic analysis
(pLSA) for ASR on different data, for example, broadcast news [11,12], lecture
recordings [13], and Japanese meetings [14]. The new ideas we exploit in this
work cover the following aspects. First, we use the nonparametric HDP for topic
modeling to adapt n-gram LMs. Second, we consider sequential topic model-
ing, and define documents for the HDP by placing a moving window over the
sequences of short sentences. Third, we incorporate the role information with
topic models in a hierarchical Bayesian framework. In the rest of this paper, we
will review topic models, and introduce our framework for modeling topic and
role information using the HDP, followed by a set of perplexity and word error
rate (WER) experiments.
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2 Probabilistic Topic Model

Topic models, which have received a growing interest in the machine learning
community, are used in document modeling to find a latent representation con-
necting documents and words — the topic. In a topic model, words in a document
exchangeably co-occur with each other according to their semantics, following
the “bag-of-words” assumption.

Suppose there are D documents in the corpus, and W words in the vocabulary.
Each document d = 1, . . . , D in the corpus is represented as a mixture of latent
topics, with the mixing proportions over topics denoted by θd. Each topic k =
1, . . . , K in turn is a multinomial distribution over words in the vocabulary, with
the vector of probabilities for words in topic k denoted by φk.

In this section, we review two “bag-of-word” models, LDA and the HDP,
following Teh et al. [9,15,16].

2.1 Latent Dirichlet Allocation

Latent Dirichlet allocation [10] is a three-level hierarchical Bayesian model, which
pioneered the use of the Dirichlet distribution for latent topics. That is, the

Fig. 1. Graphical model depictions for (A) latent Dirichlet allocation (finite mixture
model), (B) Dirichlet process mixture model (infinite mixture model), (C) 2-level hi-
erarchical Dirichlet process model, and (D) the role-HDP where Grole denotes the DP
for one of the four roles (PM, ME, UI, and ID) in the AMI Meeting Corpus. Each
node in the graph represents a random variable, where shading denotes an observed
variable. Arrows denote dependencies among variables. Rectangles represent plates, or
repeated sub-structures in the model.
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topic mixture weights θd for the dth document are drawn from a prior Dirichlet
distribution with parameters α, π:

P (θd|απ) =
Γ (
∑K

i=1 απi)∏K
i=1 Γ (απi)

θαπ1−1
1 . . . θαπK−1

K (1)

where K is the predefined number of topics in LDA, Γ is the Gamma function,
απ = {απ1, . . . , απK} represents the prior observation counts of the K latent
topics with απi > 0: π is the corpus-wide distribution over topics, and α is called
the concentration parameter which controls the amount of variability from θd

to their prior mean π.
Similarly, Dirichlet priors are placed over the parameters φk with the param-

eters βτ . We write:

θd|π ∼ Dir(απ) φk|τ ∼ Dir(βτ ) (2)

Fig. 1.(A) depicts the graphical model representation for LDA. The generative
process for words in each document is as follows: first draw a topic k with
probability θdk, then draw a word w with probability φkw . Let wid be the ith
word token in document d, and zid the corresponding drawn topic, then we have
the following multinomial distributions:

zid|θd ∼ Mult(θd) wid|zid, φzid
∼ Mult(φzid

) (3)

2.2 Hierarchical Dirichlet Process

LDA uses Dirichlet distributed latent variables to represent shades of member-
ships to different cluster or topics. In the HDP nonparametric models are used
to avoid the need for model selection [16]. Two extensions are made in the HDP:
first the Dirichlet distributions in LDA are replaced by Dirichlet processes in the
HDP as priors for topic proportions; second, the priors are arranged in a tree
structure.

Dirichlet Process. The Dirichlet process (DP) is a stochastic process, first
formalised in [17] for general Bayesian modeling, which has become an impor-
tant prior for nonparametric models. Nonparametric models are characterised by
allowing the number of model parameters to grow with the amount of training
data. This helps to alleviate over- or under-fitting problems, and provides an
alternative approach to parametric model selection or averaging.

A random distribution G over a space Θ is called a Dirichlet process dis-
tributed with base distribution H and concentration parameter α, if

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)) (4)

for every finite measurable partition A1, . . . , Ar of Θ. We write this as G ∼
DP(α, H). The parameter H , a measure over Θ, is intuitively the mean of the
DP. The parameter α, on the other hand, can be regarded as an inverse variance
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of its mass around the mean H , with larger values of α for smaller variances.
More importantly in infinite mixture models, α controls the expected number of
mixture components in a direct manner, with larger α implying a larger number
of mixture components a priori.

Draws from a DP are composed as a weighted sum of point masses located at
the previous draws θ1, . . . , θn. This leads to a constructive definition of the DP
called the stick-breaking construction [18]:

βk ∼ Beta(1, α) πk = βk

k−1∏
l=1

(1 − βk) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗
k

(5)

Then G ∼ DP(α, H). θ∗k is a unique value among θ1, . . . , θn, and δθ∗
k

denotes
a point mass at θ∗k. The construction of π can be understood as follows [15].
Starting with a stick of length 1, first break it at β1, assign π1 to be the length
of stick just broken off. Then recursively break the other portion to obtain π2, π3

and so forth. The stick-breaking distribution over π is sometimes written as
π ∼ GEM(α)2, and satisfies

∑∞
k=1 πk = 1 with probability one. This definition

is important for the inference for the DP.
Recall in Equation 2 for LDA, a finite-dimensional Dirichlet distribution (i.e.,

in which π is a K-dimensional vector) is used as prior for distribution of topic
proportions. LDA, in this sense, is a finite mixture model. If we use a DP instead
as prior for mixing topic proportions, that is, θd ∼ DP(α, H) where φk|H ∼
Dir(βτ ), then the stick-breaking construction for π ∼ GEM(α) will produce a
countably infinite dimensional vector π. In this way, the number of topics in this
DP-enhanced LDA model is potentially infinite, the number of topics increasing
with the available data.

This model, as shown in Fig. 1.(B), is called the Dirichlet process mixture
model (also known as an infinite mixture model).

Hierarchical Framework. Besides the nonparametric extension of LDA from
Dirichlet distribution to Dirichlet process, Teh et al. [9] further extended the
Dirichlet process mixture model from a flat structure to a hierarchical structure,
called a hierarchical Dirichlet process mixture model. This extended model uses
the hierarchical Dirichlet process as priors. Similar to the DP, the HDP is a prior
for nonparametric Bayesian modeling. The difference is that in the HDP, it is
assumed that there are groups of data, and that the infinite mixture components
are shared among these groups.

Considering a simple 2-level HDP as an example, as shown is Fig. 1.(C),
the HDP defines a set of random probability measure Gj , one for each group
of data, and a global random probability measure G0. The global measure G0

is distributed as a DP with concentration parameter γ and base probability
measure H , and the random measure Gj , assuming conditionally independent
given G0, are in turn distributed as a DP with concentration parameter α and
base probability measure G0:

G0|γ, H ∼ DP(γ, H) Gj |α, G0 ∼ DP(α, G0) (6)
2 GEM stands for Griffiths, Engen, and McCloskey.
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This results in a hierarchy of DPs, in which their dependencies are specified
by arranging them in a tree structure. Although this is a 2-level example, the
HDP can readily be extended to as many levels as required.

An HDP-enhanced LDA model, therefore, will have a potentially infinite num-
ber of topics, and these topics will be shared among groups of data. If an HDP is
used as a prior for topic modeling, then the baseline distribution H provides the
prior distribution for words in the vocabulary, i.e., φk|H ∼ Dir(βτ ). The distri-
bution G0 varies around the prior H with the amount of variability controlled by
γ, i.e., G0 ∼ DP(γ, Dir(βτ )). The actual distribution Gd for dth group of data
(words in dth document in topic models) deviates from G0, with the amount
of variability controlled by α, i.e., Gd ∼ DP(α, G0). Together with (3), this
completes the definition of an HDP-enhanced LDA topic model.

3 Modeling Topic and Role Using HDP

In this section we discuss three key questions concerning the modeling of topic
and role using the HDP. First, how should a document be defined in a multiparty
meeting? Second, how do we introduce role into the HDP framework? Third, how
can the local estimates from an HDP be used to adapt a baseline n-gram LM
for an ASR system?

Document Definition. The target application of the HDP in this paper is
the adaptation of LMs for a multiparty conversational ASR system. For each
sentence in the testing data, we need to find a corresponding document for the
HDP, based on which topics are extracted, and then the LM is dynamically
adapted according to the topic information. Documents also include informa-
tion about speaker role. In the AMI Meeting Corpus, meetings are manually
annotated with word transcription (in *.words.xml), with time information be-
ing further obtained via forced alignment. Also available in the corpus are the
segment annotations (in *.segments.xml). Role information can be easily de-
termined from the annotations in the corpus. We used the following procedure,

foreach meeting m in the corpus
retrieve words with time and role info for m;
align all words in m to a common timeline;
foreach segment s in m
st = starttime(s); et = endtime(s)
if et-st < winlen L: st = et-L;
foreach w in words[st:et]
if not stopword(w): doc(s) += w;

end
role(s) = role assigned to most words;

end
end

Fig. 2. The procedure used to define documents for the HDP/rHDP
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as shown in Fig. 2, to obtain documents: for each scenario meeting, first align
all the words in it along a common timeline; then for each sentence/segment,
collect those non-stop words belonging to a window of length L, by backtracing
from the end time of the sentence/segment, as the document. The role that has
been assigned to the most of words in the window is selected as the role for that
document.

By collecting all documents for meetings belonging to the training and testing
data respectively, we can obtain the training data for HDP model and the test-
ing data for perplexity evaluation. A similar idea applies to finding documents
dynamically for ASR experiments. The difference is that we do not have the
segment annotations in this case. Instead speech segments, obtained by either
automatic or manual approaches, are used as units for finding documents as
well as for ASR. In the ASR case we use an online unsupervised method: ASR
hypotheses (with errors and time information) from previous segments are used
to define documents for HDP inference for the current segment. In both cases
above, we simply ignore those segments without corresponding documents.

Incorporation of Role Information. As a preliminary attempt, we consider
the problem of introducing role into the HDP hierarchy to enable better topic
modeling. In the scenario meetings of the AMI Meeting Corpus, each of the
four participants in a meeting series was assigned a different role (PM, ME, UI,
or ID). Since different participants have different roles to play, there may be
a different topic distribution, and in turn different dominant words, specific to
each role. However, we still expect topic models to work as a whole on the corpus
rather than having four separate topic models. The HDP is thus an appropriate
model, because it has a flexible framework to express DP dependencies using a
tree structure.

Documents were defined as described above for those scenario meetings with
role information, a one-to-one mapping. We grouped the documents for each
of the four roles, and assigned a DP Grole for each role, which then served as
the parent DP in the HDP hierarchy (the base probability measure) for all DPs
corresponding to documents belonging to that role. To share the topics among
four roles, a global DP G0 was used as the common base probability measure
for the four role DPs Grole. See the graphical model shown in Fig. 1.(D) for the
HDP hierarchy. Formally speaking, we used a 3-level HDP, referred to as rHDP,
to model topic and role information in the AMI Meeting Corpus:

G0|γ, H∼DP(γ, H), Grole|α0, G0 ∼ DP(α0, G0), Gj |α1, Grole∼DP(α1, Grole) (7)

Combination with n-grams. A topic in an HDP is a multinomial distribu-
tion over words in the vocabulary (denoted as φk), which can be considered as a
unigram model. To be precise, we use Phdp(w|d) to denote the unigram probabil-
ities obtained by the HDP based on the jth document d. The HDP probability
Phdp(w|d) is approximated as a sum over all the latent topics φk for that docu-
ment, supposing there are K topics in total in the HDP at the current time:
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Phdp(w|d) ≈
K∑

k=1

φkw · θdk (8)

where the probability vector φk is estimated during training and remains fixed
in testing, while the topic weights θd|G0 ∼ DP(α0, G0) are document-dependent
and thus are calculated dynamically for each document. For rHDP, the difference
is that the topic weights are derived from role DPs, i.e., θd|Grole ∼ DP(α1, Grole).

As in [19], we treat Phdp(w|d) as a dynamic marginal and use the following
equation to adapt the baseline n-gram model Pback(w|h) to get an adapted n-
gram Padapt(w|h), where z(h) is a normalisation factor:

Padapt(w|h) =
α(w)
z(h)

· Pback(w|h) α(w) ≈
(

Phdp(w|d)
Pback(w)

)μ

(9)

4 Experiment and Result

We report some experimental results in this section. The HDP was implemented
as an extension to the SRILM toolkit3. All baseline LMs used here were trained
using SRILM, and the N-best generation and rescoring were based on a modified
tool from SRILM.

Since we considered the role information, which is only available in scenario
AMI meetings, we used part of the AMI Meeting Corpus for our experiments.
There are 138 scenario meetings in total, of which 118 were used for training and
the other 20 for testing (about 11 hours). We used the algorithm introduced in
Section 3 to extract the corresponding document for each utterance. The average
number of words in the resulting documents for window lengths of 10 and 20
seconds was 10 and 14 respectively. Data for n-gram LMs were obtained as usual
for training and testing.

We initialized both HDP and rHDP models with 50 topics, and β = 0.5
for Equation 2. HDP/rHDP models were trained on documents of 10 seconds
window length from the scenario AMI meetings with a fixed size vocabulary of
7,910 words, using a Markov Chain Monte Carlo (MCMC) sampling method.
The concentration parameters were sampled using the auxiliary variable sample
scheme in [9]. We used 3,000 iterations to ‘burn-in’ the HDP/rHDP models.

4.1 Perplexity Experiment for LMs

In order to see the effect of the adapted LMs on perplexity, we trained three
baseline LMs: the first one used the AMI n-gram training data, the second
used the Fisher conversational telephone speech data (fisher-03-p1+p2), and the
third used the Hub-4 broadcast news data (hub4-lm96). A fourth LM was trained
using all three datasets. All the four LMs were trained with standard parameters
using SRILM: trigrams, cut-off value of 2 for trigram counts, modified Kneser-
Ney smoothing, interpolated model. A common vocabulary with 56,168 words
3 http://www.speech.sri.com/projects/srilm

http://www.speech.sri.com/projects/srilm
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Table 1. The perplexity results of HDP/rHDP-adapted LMs

LMs Baseline HDP-adapted rHDP-adapted

AMI 107.1 100.7 100.7
Fisher 228.3 176.5 176.4
Hub-4 316.4 248.9 248.8

AMI+Fisher+Hub-4 172.9 144.1 143.9

was used for the four LMs, which has 568 out-of-vocabulary (OOV) words for
the AMI test data.

The trained HDP and rHDP models were used to adapt the above four base-
line n-gram models respectively, using Equation 9 with μ = 0.5. Different vo-
cabularies were used by the HDP/rHDP models compared with the baseline
n-gram models. Only those words occurring in both the HDP/rHDP vocabulary
and the n-gram vocabulary were scaled using Equation 9. Table 4.1 shows the
perplexity results for the adapted n-gram models. We can see both HDP- and
rHDP-adapted LMs produced significant reduction in perplexity, however there
was no significant difference between using the HDP or rHDP as the dynamic
marginal in the adaptation.

4.2 ASR Experiment

Finally, we investigated the effectiveness of the adapted LMs based on topic and
role information from meetings on a practical large vocabulary ASR system. The
AMIASR system [20] was used as the baseline system.

We began from the lattices for the whole AMI Meeting Corpus, generated by
the AMIASR system using a trigram LM trained on a large set of data coming
from Fisher, Hub4, Switchboard, webdata, and various meeting sources including
AMI. We then generated 500-best lists from the lattices for each utterance. The
reason why we used N-best rescoring instead of lattice rescoring is because the
baseline lattices were generated using a trigram LM.

We adapted two LMs (Fisher, and AMI+Fisher+Hub4) trained in Section 4.1
according to the topic information extracted by HDP/rHDP models based on
the previous ASR outputs, using a moving document window with a length of 10
seconds. The adapted LM was destroyed after it was used to rescore the current
N-best lists. Two adapted LMs together with the baseline LM were then used to
rescore the N-best lists with a common language model weight of 14 (the same
as for lattice generation) and no word insertion penalty.

Table 4.2 shows the WER results. LMs adapted by HDP/rHDP both yield
an absolute reduction of about 0.7% in WER. This reduction is significant using
a matched-pair significance4 test with p < 10−15. However, again there was no
significant difference between the HDP and the rHDP.

To further investigate the power of HDP/rHDP-adapted LMs, we trained a
standard unigram, AMI-1g, on the AMI training data, which is the same data
4 http://www.icsi.berkeley.edu/speech/faq/signiftest.html

http://www.icsi.berkeley.edu/speech/faq/signiftest.html
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Table 2. The %WER results of HDP/rHDP-adapted LMs

LMs SUB DEL INS WER

Fisher 22.7 11.4 5.8 39.9
AMI-1g-adapted 22.4 11.3 5.7 39.4
HDP-adapted 22.2 11.3 5.6 39.1
rHDP-adapted 22.3 11.3 5.6 39.2

AMI+Fisher+Hub4 21.6 11.1 5.4 38.2
AMI-1g-adapted 21.3 11.0 5.4 37.8
HDP-adapted 21.2 11.1 5.3 37.6
rHDP-adapted 21.2 11.1 5.3 37.5

used for HDP/rHDP training. This unigram was trained using the same vocabu-
lary of 7,910 words as that for HDP/rHDP training. We then used this unigram
as dynamic marginal to adapt the baseline LMs, also using the formula in Equa-
tion 9. The “AMI-1g-adapted” lines in Table 4.2 shows the WER results. We
see, although AMI-1g-adapted LMs have lower WERs than that of the base-
line LMs, HDP/rHDP-adapted LMs still have better WER performances (with
0.2–0.3% absolute reduction) than AMI-1g-adapted. Significant testing indicates
that both improvements for the HDP/rHDP are significant, with p < 10−6.

5 Discussion and Future Work

In this paper, we successfully demonstrated the effectiveness of using the topic
(and partly role) information to adapt LMs for ASR in meetings. The topics were
automatically extracted using the nonparametric HDP model, which provides
an efficient and flexible Bayesian framework for topic modeling. By defining the
appropriate ‘documents’ for HDP models, we achieved a significant reduction
in both perplexity and WER for a test set comprising about 11 hours of AMI
meeting data.

To our understanding, the reasons for the significant improvements by adapted
LMs based on the topic and role information via the HDP come from the follow-
ing sources. First, the meeting corpus we worked on is a domain-specific corpus
with limited vocabulary, especially for scenario meetings, with some words quite
dominant during the meeting. So by roughly estimating the ‘topic’, and scaling
those dominant words correctly, it is possible to improve LM accuracy. Second,
HDP models can extract topics well, particularly on the domain-specific AMI
Meeting Corpus. One interesting result we found is that different HDP/rHDP
models, though trained using various different parameters, did not result in sig-
nificant differences in either perplexity or WER. By closely looking at the result-
ing topics, we found that some topics have very high probability regardless of
the different training parameters. One characteristic of those topics is that the
top words normally have very high frequency. Third, the sentence-by-sentence
style LM adaption provides further improvements, to those obtained using the
AMI-1g-adapted LMs in Table 4.2. Language models are dynamically adapted
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according to the changes of topics detected based on the previous recognized
results. This can be intuitively understood as a situation where there are K un-
igram LMs, and we dynamically select one unigram to adapt the baseline LMs
according to the context (topic). In this paper, however, both the number of uni-
gram models K and the unigram selected for a particular time are automatically
determined by the HDP/rHDP. Although this is unsupervised adaptation, it per-
forms better than LM adaptation using static LMs trained on reference data.

One the other hand, the rHDP had a similar accuracy to the HDP in terms
of both perplexity and WER. Our interpretation for this is that we did not ex-
plicitly use the role information for adapting LMs, only using it as an additional
DP level for sharing topics among different roles. As mentioned above, based on
the AMI Meeting Corpus, which has a limited domain and consequently limited
vocabulary words, this will not cause much difference in the resulting topics,
no matter whether HDP or rHDP is used for topic modeling. Despite this, in-
cluding the role information in the HDP framework can give us some additional
information, such as the topics proportion specified to each role. This implies
some scope to further incorporate role information into the hierarchical Bayesian
framework for language modeling, for example by sampling the role randomly for
each document, empirically analysing the differences between HDP and rHDP,
and explicitly using the role for language modeling. Another possibility for fur-
ther investigation is about the prior parameter for Dirichlet distribution: can
prior knowledge from language be used to set this parameter? Finally, more
ASR experiments to verify the consistence and significance of this framework on
more meeting data, e.g., a 5-fold cross-validation on the AMI Meeting Corpus,
would be informative.
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Abstract. A major problem for users exploiting speech archives is the
laborious nature of speech access. Prior work has developed methods
that allow users to efficiently identify and access the gist of an archive
using textual transcripts of the conversational recording. Text processing
techniques are applied to these transcripts to identify unimportant parts
of the recording and to excise these, reducing the time taken to identify
the main points of the recording. However our prior work has relied
on human-generated as opposed to automatically generated transcripts.
Our study compares excision methods applied to human-generated and
automatically generated transcripts with state of the art word error rates
(38%). We show that both excision techniques provide equivalent support
for gist extraction. Furthermore, both techniques perform better than the
standard speedup techniques used in current applications. This suggests
that excision is a viable technique for gist extraction in many practical
situations.

1 Introduction

Large archives of speech recordings are becoming more common, as the cost
of storage continues to decrease. Such speech archives include: meeting records
[9], news [3] and voicemail [18]. Recent tools for accessing these archives either
assist users in locating recordings of interest [3] or on supporting the listening
process by providing complex visual browsers for access [16]. However people are
increasingly using simple, mobile devices (phones or PDAs), where rich displays
are not available. In previous work we have developed and evaluated a number of
temporal compression techniques which do not rely on complex visual displays.
They aim to reduce the time taken to listen to a speech recording while still
allowing users to extract the most important information. Such techniques are
designed to support gist extraction, i.e. general understanding of a recording
rather than providing access to specific facts.

There are two main ways to reduce the amount of time required to listen to
a recording. We can either excise unimportant portions to reduce its length, or
alter the playback rate, i.e. speed it up. Speedup is used in many commercial
applications, e.g. voicemail. With speedup, playback rate is altered so as to not

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 226–235, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Time-Compressing Speech: ASR Transcripts Are an Effective Way 227

affect speaker pitch, and the speedup can be non-linear, reflecting the way in
which humans naturally increase their speech rate [2, 6]. Whilst speed up ensures
that listeners hear the complete recording, excision compresses it by removing
parts - using semantic or acoustic cues to identify unimportant information for
subsequent removal.

In previous experiments [14, 15] we evaluated various novel temporal compres-
sion techniques, including speedup, excision and hybrid methods that combined
speedup and excision techniques. In [14] we used a measure of gist extraction to
compare excision and non-linear speed up against an uncompressed control. Our
findings show that excision leads to objectively better listener performance than
speedup, and excision is also preferred to speedup. Both excision and speedup
compression methods lead to more efficient gist extraction than uncompressed
speech. Whilst there is evidence that using ASR as opposed to a manual tran-
script has only a small effect on textual summarization [12] an outstanding ques-
tion is what effect transcript accuracy has on the ability of listeners to extract
useful information from temporally compressed audio. This paper examines this
question and determine whether listeners are able to extract gist from temporally
compressed recordings when the underlying transcripts contain ASR errors.

We therefore compare excision performance for human generated transcripts,
with ASR transcripts containing a word error rate (WER) of 38%. This error
rate represents state of the art recognition quality for meetings corpora [4]. We
compare these with standard speedup techniques for different levels of tempo-
ral compression. We also investigate the effects of compression under two sets
of conditions: passive exposure to speech excerpts where users listen to speech
clips without being able to stop or replay what they hear; and more active explo-
ration of clips using a simple browsing interface. We first describe the evaluation
procedure, following which we outline and discuss the results of the study.

2 Assessment Procedure

The assessment procedure aims to objectively and efficiently measure users’ abil-
ity extract gist from spoken materials. Typical measures of understanding used
in this domain focus on recall of specific facts [17]. However our techniques
are intended to support gist extraction rather than factual knowledge making
these techniques inappropriate. An alternative way to measure gist extraction
asks users to summarize what they have heard, which is then scored against
a gold standard summary [1]. However summarization and evaluation are time-
consuming for subjects. More importantly, there is no consensus about metrics or
methods for the effective evaluation of summaries [13]. We assume that effective
gist extraction requires users to distinguish the importance of different utter-
ances, being able to say which utterances are central to the meeting and which
are peripheral. We therefore devised a hybrid evaluation method which employs
judges to produce an initial gold standard importance ranking of representative
utterances from the recording. In the evaluation stage, we ask experimental sub-
jects to rank the same utterances after they have listened to different types of
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Fig. 1. Overview of assessment procedure. Judges examine the transcript ranking se-
lected target utterances.

temporally compressed recordings. The objective measure of gist extraction is
then the correlation between gold standard rankings and those obtained under
temporal compression. Our measure of the quality of temporal compression is
the extent to which subjects listening using temporal compression are able to
replicate the judges gold standard rankings. A high correlation between subject
rankings and the gold standard indicates the temporal compression technique
provides good support for gist extraction. The evaluation process is described in
detail below.

2.1 Algorithms

We used 33 transcripts altogether; 27 four-minute and 6 thirty-minute meeting
excerpts from the ICSI meeting corpus [10], using the human generated tran-
scripts supplied with the corpus. The automatically produced (ASR) transcripts
were generated using a six pass architecture using 16 component Gaussian HMMs
as acoustic models [4]; the WER for the ASR transcripts was 38%. This error
rate is state of the art for meetings data.

From both of these transcript sets we first identified stop words (such as
‘the’, ’and’, them’, etc.). We then separately determined the importance of non-
stop words using measures of term frequency * inverse document frequency
(TF*IDF)[7]:

imptd =
log(counttd + 1)

log(lengthd)
× log(

N

Nt
), (1)

where imptd is the importance of a term t in a document d, counttd is the
frequency with which term t appears in transcript d, lengthd is the number of
unique terms in transcript d, N is the number of transcripts in the corpus and
Nt is the number of transcripts in the corpus which contain the term t.

2.2 Gold Standard Measurements

We then computed the importance of each utterance in the transcripts as the
mean importance of the non-stop words which appear in the utterance. These
importance scores were then used to select a subset of utterances which we
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presented to the judges for gold standard ranking. We did this for long and short
extracts. The short excerpts five target utterances were manually chosen from the
full range of importance levels. Thus both highly important and unimportant
utterances were chosen, as well as utterances distributed across the intermedi-
ate levels of importance. Utterances were manually selected to ensure that the
selected utterances were meaningful and non-repetitive. For the longer excerpts
twenty utterances were chosen using the same criteria. Target utterances were
chosen to be less than a minute long and represented speech from a single speaker
and were a mean of 16 words in length.

We built a small web-based application to collect judges’ target utterance
rankings. Each judge was assigned a selection of either short or long excerpts
and at least three independent rankings were collected for each meeting excerpt.

The judges ranked the five selected utterances for the short excerpts and
twenty utterances for the long excerpts. They were given an unlimited amount of
time to perform their rankings. To determine reliability we measured Kendall’s
coefficient of concordance for these rankings. The coefficient in all cases was
greater than 0.6 with a mean concordance of 0.75, indicating a good level of
agreement (p < 0.05). We then constructed the gold-standard rankings by com-
puting the mean ranking for each target utterance across judges, with the as-
sumption that the rankings can be evenly spread on a linear scale. Note that
this means that target utterances can be assigned non-integral rankings.

2.3 Compression Techniques

We evaluated two different temporal compression algorithms, one that used ex-
cision and the other that used a standard speedup technique [2]. The excision
technique removed unimportant utterances, and was applied to both ASR and
human generated transcripts.

Insignificant Utterance Excision. Our excision approach relies purely on
the words in the transcript and does not require complex natural language or
acoustic processing. We first compute utterance importance scores using TF*IDF
([7]) using the method described above, to rank the utterances contained within
the transcript in order of their importance. The compressed clip is constructed
by adding utterances to an empty file in order of their importance until the
file reaches the length required by the specified compression level. Utterances
are presented in the order in which they occurred in the original recording. We
apply the approach to both ASR and human generated transcripts to generate
two insignificant utterance excision files - one generated from ASR transcripts
and the other from the human generated transcripts.

Non-Linear Speech Rate Alteration. We used the Mach1 speedup algo-
rithm [2] which aims to replicate the phonetic variations which occur when hu-
mans naturally modify their speech rate. We first compute a measure of the
relative speed rate for each part of the recording. We then linearly transform
this relative speed contour so that the entire excerpt duration meets the desired
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Fig. 2. The interface used in the active condition

level of compression. This transformed contour is then used to dynamically alter
the speed rate using a standard SOLA algorithm [6].

2.4 Compression Levels

In addition to modifying the type of compression we also alter the compression
level. We also investigate the effects of compression under two sets of conditions:
passive exposure to short speech excerpts where users cannot stop or replay
what they are hearing; and more active exploration of longer clips using a simple
browsing interface. This simple interface shown in Fig.2 allows users to turn the
compression on/off, pause or re-listen to a recent portion of the recording when
processing became difficult or they feel they have missed something important.

For the short excerpts we applied three levels of compression (66, 50 and 40%
of the original duration, which corresponds to 1.5, 2 and 2.5 times normal speed)
and for the longer excerpts two levels of compression were applied (66 and 50%
of the original length). These levels of compression are consistent with accepted
comfortable listening levels [5].

2.5 Subjects

Eleven subjects were selected from university staff and students. They were aged
between 20 and 40. None reported any hearing difficulties and each received a
confectionery reward for taking part.

2.6 Experimental Procedure

All experiments took place in a noise-reduced acoustic booth; excerpts were pre-
sented diotically over Sennheiser HD250 Linear II headphones. A Java program
was used to present the excerpts and to collect the results.

Subjects attended experiments over three days and were presented with a
single compression technique for each day. Each day consisted of two phases, a
passive phase and an active phase.

In the first (passive) phase, users heard nine different compressed excerpts
(three repetitions of each of the three compression levels). After hearing each
complete excerpt they were presented with the set of target utterances for that
excerpt and asked to rank the importance of each of the utterances in the context
of the whole excerpt. Subjects performed their rankings by choosing labels from a
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five point Likert scale (’important’ to ’unimportant’) from drop down menus next
to the target utterances. The ordering of the target utterances was randomized
for each user.

Before carrying out the active exposure using the simple browser, subjects
were given a short tutorial that explained the various functions of the browser
interface. They then briefly experimented wit the browser on a short speech ex-
cerpt until they felt there were comfortable using it. In the active phase subjects
had thirty minutes to explore each excerpt using the browser. The experiment
was time limited and either ended after thirty minutes, or when the subjects
had listened to the excerpt in its entirety. Typically, subjects finished before the
thirty minute deadline. The interface indicated how much time was remaining
and it was made clear to subjects that they should attempt to use the inter-
face controls for replaying or decompressing sparingly to ensure that they have
enough time to listen to the full recording. When they had finished listening
they were presented with the twenty target utterances and the same five rank-
ing levels were used to judge (rather than rank) the importance level of each of
the target utterances. In both phases subjects were given an unlimited amount
of time to perform their rankings or judgments.

2.7 Performance Measures and Data Collected

We used Kendall’s tau to measure the level of agreement between the gold stan-
dard rankings and the subject ranking and judgments. The performance score
was computed using the following equation:

τ = 1 − 2i/p, (2)

where i is the number of inversions between ranking pairs and p is the total
number of ranking pairs. Thus we compute the proportion of target utterance
pairs which users have ranked in a different order from the ordering present
in the gold standard. By computing Kendall’s tau in this way we overcome
any problems associated with the non-integral rankings (since we focus on the
direction of the pairwise orderings). The same scoring technique is used for both
the long and short meeting excerpts. We additionally normalize the scores by
the mean τ across subjects and conditions for clarity.

This simple measure of agreement, however, does not capture a key aim of
temporal compression - which is to reduce the time taken to effectively process a
recording. We therefore normalize the success scores to take account of listening
time as a function of the original recording length. We call this normalized
measure Comprehension Efficiency (Ce):

Ce =
τ/τ̂

tlistening/toriginal
, (3)

where, τ̂ is the mean tau across all subjects and conditions, tlistening is the total
listening time and toriginal is the uncompressed length of the recording.
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In addition to Comprehension Efficiency measure, we collected users’ subjec-
tive reactions to the various compression techniques, asking them to compare
and contrast their listening experiences. We also logged their use of the browser,
specifically different browser actions such as stopping playback, replaying speech
or removing compression to determine how this was used in the different com-
pression conditions.

2.8 Hypotheses

We made separate predictions for the passive and active listening conditions.

Passive Condition. We did not expect ASR to affect comprehension efficiency.
We expected subjects to be able to extract gist equally efficiently with both the
ASR and human transcript based excision methods. As in [14], we expect excision
to be superior to speedup, regardless of the type of transcript. We also expect
that increased compression levels will lead to greater levels of comprehension
efficiency since subjects will be able to extract gist more rapidly, given that our
comprehension measure is normalized according to clip length.

Active Condition. In the active condition, because the user is able to recover
from listening errors using the browser, we do not expect the compression tech-
nique to affect comprehension efficiency. Our previous experiment found that
comprehension efficiency increased with the compression level and we expect
this to be the same here. Again, we expect that users will make more active use
of the browsing interface when processing sped up speech since this condition
requires the listener to clarify key points uncompressed.

3 Results

3.1 Passive Condition

To assess the objective results for the passive condition we conducted a 3 (com-
pression level) X 3 (compression type) ANOVA with comprehension efficiency
as the dependent variable. The results are shown in the two left hand graphs in
Fig.3.

As predicted, we found an overall main effect of compression type on compre-
hension efficiency (F(2,288) = 3.386, p < 0.05). Planned comparisons confirmed
that there was no significant difference between comprehension efficiency in the
two excision conditions regardless of whether the transcript was human or ASR
generated (p > 0.3). However, as predicted, comprehension efficiency in the speed
up condition was worse than in the two excision conditions combined (p < 0.02).

The ANOVA confirmed the effect of compression level on comprehension ef-
ficiency (F(2,288) = 7.005, p < 0.05), with planned comparisons confirming that
there was greater comprehension efficiency at the two higher compression levels
compared with 1.5 times compression (p < 0.05).
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Fig. 3. Error bar graphs showing comprehension efficiency against compression type
(bottom) and compression level (top) for the short (left) and long (right) conditions

3.2 Active Condition

To assess the objective results for the long condition we conducted a 2 (com-
pression level) X 3 (compression type) MANOVA with comprehension efficiency
and interface actions as the dependent variables.

Consistent with our predictions, there was no effect of compression technique
on comprehension efficiency (F(2,60) = 0.302, p > 0.7). As in our previous study
it seems that the use of the interface allows subjects to extract gist efficiently,
independently of the interface condition by stopping, uncompressing the speech
and by replaying elements they failed to understand.

We found no effect of compression level on the comprehension efficiency in the
long condition (F(1,60) = 1.254, p > 0.25). We think that this could be an effect
of the interface controls causing any potential processing gains afforded by the
shorter playing time to be dampened.

As in our previous study we found that there was an effect of compression tech-
nique on the number of interface actions performed (F(2,60) = 9.593, p < 0.01).
Planned comparisons indicated that more actions were used in the speed up con-
dition (p < 0.01) but there was no significant difference between the actions used
in the excision conditions (p > 0.7). There was no indication therefore, that sub-
jects had to make more adjustments with ASR than human-transcript excision.

3.3 Qualitative Results

An analysis of the questionnaire results for the passive condition shows a main
effect of condition on the subject answers (F(2,30) = 5.117, p < 0.01). Tukey
planned comparisons indicate that this was a result of the differences in the
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answers for the excision and speed up (each p < 0.05); there was no difference
between the answers given for the excision conditions (each p > 0.08). In the
active condition listeners felt that the “speech was too fast” in the speed up case
compared with excision(p < 0.03) and that they “repeatedly had to go back in
the speech” (p < 0.05) in speedup compared with excision conditions. We found
no subjective difference between the excision conditions (p > 0.08).

4 Discussion

This paper examines the effects of using ASR transcripts to construct compressed
meeting recordings to support gist extraction. We found no differences in gist
extraction performance between human generated and ASR transcripts for state
of the art ASR error levels (38% WER). ASR also had no effect on the interaction
strategies employed by listeners when processing temporally compressed speech
nor on the subjective assessment of the techniques. However ASR methods were
superior to state of the art techniques currently used for speedup [2]. Other
findings are consistent with our previous work [14].

Our results extend our previous work on temporal compression and add to
the body of literature which shows that errorful transcripts can be highly useful
in a variety of other tasks, e.g. speech retrieval or speech browsing ([3, 18]).
Given that these experiments were carried out using informal multi-participant
conversational speech the approach taken here could also be promising when
applied to other speech domains such as news domains or recorded presentations.

Whilst our compression algorithms work well in this domain there are several
ways they might be improved. Firstly, we rely exclusively on lexical techniques
to compute importance; more sophisticated measures of utterance importance
(using syntactic or prosodic information [8] or even information about speaker
role [11]) could lead to improvements in comprehension efficiency. Secondly, we
could also exploit other sources or metadata to refine our importance scores - for
example using visual cues to participant attention [19], or slide usage to indicate
regions of high interest to meeting participants.

Future work will examine the use of these techniques for accessing other types
of information - for example we have shown that they work well for extracting
gist, but it is an open question as to how effective they are when used to answer
more specific, factual, styles of questions.
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Abstract. This paper is about the extractive summarization of meeting speech,
using the ICSI and AMI corpora. In the first set of experiments we use prosodic,
lexical, structural and speaker-related features to select the most informative dia-
logue acts from each meeting, with the hypothesis being that such a rich mixture
of features will yield the best results. In the second part, we present an approach in
which the identification of “meta-comments” is used to create more informative
summaries that provide an increased level of abstraction. We find that the inclu-
sion of these meta comments improves summarization performance according to
several evaluation metrics.

1 Introduction

Speech summarization has attracted increasing interest in the past few years. There
has been a variety of work concerned with the summarization of broadcast news [3,
8, 14, 19], voicemail messages [11], lectures [9, 21] and spontaneous conversations
[18, 22]. In this paper we are concerned with the summarization of multiparty meetings.
Small group meetings provide a compelling setting for spoken language processing,
since they feature considerable interaction (up to 30% of utterances are overlapped), and
informal conversational speech. Previous work in the summarization of meeting speech
[6, 16, 20] has been largely based on the extraction of informative sentences or dialogue
acts (DAs) from the source transcript. The extracted portions are then concatenated to
form a summary of the meeting, with informativeness gauged by various lexical and
prosodic criteria, among others.

In this work we first present a set of experiments that aim to identify the most useful
features for the detection of informative DAs in multiparty meetings. We have applied
this extractive summarization framework to the ICSI and AMI meeting corpora, de-
scribed below. Extractive summaries of multiparty meetings often lack coherence, and
may not be judged to be particularly informative by a user. In the second part of the
paper, we aim to produce summaries with a greater degree of abstraction through the
automatic extraction of “meta” DAs: DAs in which the speaker refers to the meeting
itself. Through the inclusion of such DAs in our summaries, we hypothesize that the
summaries will be more coherent and more obviously informative to an end user. Much
as human abstracts tend to be created in a high-level fashion from a third-party perspec-
tive, we aim to automatically create extracts with similar attributes, harnessing the self-
referential quality of meeting speech. Using an expanded feature set, we report results
on the AMI corpus and compare with our previously generated extractive summaries.

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 236–247, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Experimental Setup

We have used the the AMI and ICSI meeting corpora. The AMI corpus [1] consists of
about 100 hours of recorded and annotated meetings, divided into scenario and non-
scenario meetings. In the scenario portion, groups of four participants take part in a
series of four meetings and play roles within a fictitious company. While the scenario
given to them is artificial, the speech and the actions are completely spontaneous and
natural. There are 138 meetings of this type in total. The length of an individual meeting
ranges from 15 to 45 minutes, depending on which meeting in the series it is and how
quickly the group is working. For these experiments, we use only the scenario meetings
from the AMI corpus.

The second corpus used herein is the ICSI meeting corpus [10], a corpus of 75 nat-
urally occurring meetings of research groups, approximately one hour each in length.
Unlike the AMI scenario meetings and similar to the AMI non-scenario meetings, there
are varying numbers of participants across meetings in the ICSI corpus, ranging from
three to ten, with an average of six participants per meeting.

Both corpora feature a mixture of native and non-native English speakers and have
been transcribed both manually and using automatic speech recognition(ASR) [7]. The
resultant word error rates were 29.5% for the ICSI corpus, and 38.9% for the AMI
corpus.

2.1 Summary Annotation

For both the AMI and ICSI corpora, annotators were asked to write abstractive sum-
maries of each meeting and to extract the DAs in the meeting that best conveyed or
supported the information in the abstractive summary. A many-to-many mapping be-
tween transcript DAs and sentences from the human abstract was obtained for each an-
notator. It is also possible for a DA to be extractive but unlinked. The human-authored
abstracts each contain a general abstract summary and three subsections for “decisions,”
“actions” and “problems” from the meeting.

Kappa values were used to measure inter-annotator agreement. The ICSI test set
has a lower kappa value (0.35) compared with the AMI test set (0.48), reflecting the
difficulty in summarizing the much less structured (and more technical) ICSI meetings.

2.2 Summary Evaluation

To evaluate automatically produced extractive summaries we have extended the weighted
precision measure [17] to weighted precision, recall and F-measure. This evaluation
scheme relies on the multiple human annotated summary links described in the previ-
ous section. Both weighted precision and recall share the same numerator

num =
M∑
i=1

N∑
j=1

L(si, aj)

where L(si, aj) is the number of links for a DA si in the machine extractive summary
according to annotator ai, M is the number of DAs in the machine summary, and N is
the number of annotators. Weighted precision is defined as:
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precision =
num

N · M
and weighted recall is given by

recall =
num∑O

i=1

∑N
j=1 L(si, aj)

where O is the total number of DAs in the meeting, N is the number of annotators, and
the denominator represents the total number of links made between DAs and abstract
sentences by all annotators. The weighted F-measure is calculated as the harmonic mean
of weighted precision and recall.

We have also used the ROUGE evaluation framework [13] for the second set of
experiments, in particular ROUGE-2 and ROUGE-SU4. We believe that ROUGE is
particularly relevant for evaluation in that case, as we are trying to create extracts that
are more abstract-like, and ROUGE compares machine summaries to gold-standard
human abstracts.

3 Features for Meeting Summarization

In this section we outline the features and classifiers used for extractive summarization
of meetings, presenting results using the AMI and ICSI corpora.

Table 1 lists and briefly describes the set of the features used. The prosodic features
consist of energy, F0, pause, duration and a rate-of-speech measure. We calculate both
the duration of the complete DA, as well as of the uninterrupted portion. The structural
features include the DA’s position in the meeting and position within the speaker’s turn
(which may contain multiple DAs). There are two measures of speaker dominance:
the dominance of the speaker in terms of meeting DAs and in terms of total speaking
time. There are two term-weighting metrics, tf.idf and su.idf, the former favoring words
that are frequent in the given document but rare across all documents, and the latter
favoring words that are used with varying frequency by the different speakers [15]. The
prosodic and term-weight features are calculated at the word level and averaged over the
DA. In these experiments we employed a manual DA segmentation, although automatic
approaches are available [5].

For each corpus, a logistic regression classifier is trained on the seen data as follows,
using the liblinear toolkit1. Feature subset selection is carried out using a method based
on the f statistic:

F (i) =
(x̄(+)

i − x̄i)2 + (x̄(−)
i − x̄i)2

D(+) + D(−)

D(±) =
1

n± − 1

n±∑
k=1

(x(±)
k,i − x̄

(±)
i )2

where n+ and n− are the number of positive instances and negative instances, respec-
tively, x̄i, x̄

(+)
i , and x̄

(−)
i are the means of the ith feature for the whole, positive and

1 http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Table 1. Features Key

Feature ID Description

Prosodic Features
ENMN mean energy
F0MN mean F0
ENMX max energy
F0MX max F0
F0SD F0 stdev.
PPAU precedent pause
SPAU subsequent pause
ROS rate of speech
Structural Features
MPOS meeting position
TPOS turn position
Speaker Features
DOMD speaker dominance (DAs)
DOMT speaker dominance (seconds)
Length Features
DDUR DA duration
UINT uninterrupted length
WCNT number of words
Lexical Features
SUI su.idf sum
TFI tf.idf sum
ACUE (experiment 2) abstractive cuewords
FPAU (experiment 2) filled pauses

negative data instances, respectively, and x
(+)
k,i and x

(−)
k,i are the ith features of the kth

positive and negative instances [2]. The f statistic for each feature was first calculated,
and then feature subsets of size n = 3, 5, 7, 9, 11, 13, 15, 17 were tried, with the n best
features included at each step based on the f statistic. The feature subset size with the
highest balanced accuracy during cross-validation was selected as the feature set for
training the logistic regression model.

The classifier was then run on the unseen test data, and the class probabilities were
used to rank the candidate DAs for each meeting and create extracts of 700 words. This
length was chosen so that the summaries would be short enough to be read by a time-
constrained user, much as a short human abstract might be quickly consulted, but long
enough to index the most important points of the meeting. This short summary length
also necessitates a high level of precision since we extract relatively few DAs.

3.1 AMI Results

For the AMI data the best feature subset according to the feature selection method
includes all 17 features, for both manual and ASR transcriptions. For both transcription
types, the best five features (in order) were DA word count, su.idf score, DA duration,
uninterrupted length of the DA, and tf.idf score. Figure 1 shows the histograms of the
feature f statistics using both the manual and ASR transcriptions.

We calculated the ROC curves and areas under the curve (AUROC) for the classifiers
that identified the extractive DAs, using both manual and ASR transcriptions. For the
manual transcripts AUROC = 0.855, for the ASR transcripts AUROC= 0.850, with
chance level classification at 0.5.
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Fig. 1. f statistics for AMI database features
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Fig. 3. Weighted F-Measures for AMI and ICSI Corpora, Manual and ASR Transcripts

Figure 3 illustrates the weighted F-measures for the 700-word summaries on manual
and ASR transcripts using the feature-based approach. There is no significant difference
between the manual and ASR F-measures according to paired t-test, and the ASR scores
are on average slightly higher.

3.2 ICSI Results

For the ICSI corpus using manual transcripts, the optimal feature subset consisted of 15
features according to balanced accuracy, excluding mean F0 and precedent pause. The
best 5 features according to the f statistic were DA word count, uninterrupted length,
su.idf score, tf.idf score and DA duration. The optimal subset for ASR transcripts con-
sisted of the same 15 features. Figure 2 shows the histograms for the feature f statistics
using both the manual and ASR databases.

We calculated the ROC and AUROC for each classifier applied to the 6 test set meet-
ings. For manual transcripts AUROC = 0.818, and for ASR transcripts AUROC = 0.824.

Figure 3 shows the weighted F-measures for the 700-word summaries for both man-
ual and ASR transcripts. As with the AMI corpus, there is no significant difference
between manual and ASR results and the ASR average is again slightly higher.
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3.3 Discussion

In this first experiment we have shown that a rich mixture of features yields good re-
sults, based on feature subset selection with the f statistic. We have also compared the
AMI and ICSI corpora in terms of feature selection. For both corpora, summarization
is slightly better on ASR than on manual transcripts, in terms of weighted F-measure. It
is worth pointing out, however, that the weighted F-measure only evaluates whether the
correct DAs have been extracted and does not penalize misrecognized words within an
extracted DA. Such ASR errors create a problem for textual summaries, but are less im-
portant for multimodal summaries (e.g. those produced by concatenating audio and/or
video segments).

In the next section we provide a more detailed analysis of the effectiveness of various
feature subsets for an altered summarization task.

4 Meta Comments in Meeting Speech

In the second experiment we aim to improve our results through the identification of
meta DAs to be included in machine summaries. These are DAs in which the speaker
refers to the meeting itself. We first describe scheme we used to annotate meta DAs,
then present an expanded feature set, and compare summarization results with the first
experiment.

The AMI corpus contains reflexivity annotations: a DA is considered to be reflexive
if it refers to the meeting or discussion itself. Reflexive DAs are related to the idea of
meta comments, but the reflexivity annotation alone is not sufficient. Many of the DAs
deemed to be reflexive consist of statements like “Next slide, please.” and “Can I ask a
question?” in addition to many short feedback statements such as “Yeah” and “Okay.”
Although such DAs do indeed refer to the flow of discussion at a high level, they are
not particularly informative. We are not interested in identifying DAs that are purely
about the flow of discussion, but rather we would like to detect those DAs that refer to
low-level issues in a high-level way. For example, we would find the DA “We decided
on a red remote control” more interesting than the DA “Let’s move on”.

In light of these considerations, we created an annotation scheme for meta DAs, that
combined several existing annotations in order to form a new binary meta/non-meta
annotation for the corpus. The ideal condition would be to consider DAs as meta only if
they are labelled as both extractive and reflexive. However, there are relatively few such
DAs in each meeting. For that reason, we also consider DAs to be meta if they are linked
to the “decisions,” “actions” or “problems” subsections of the abstract. The intuition
behind using the DA links to those three abstract subsections is that areas of a discussion
that relate to these categories will tend to indicate where the discussion moves from a
lower level to a higher level. For example, the group might discuss technical issues
in some detail and then make a decision regarding those issues, or set out a course of
action for the next meetings.

For this second experiment, we trained the classifier to extract only these newly-
labelled meta DAs rather than all generally extract-worthy DAs as in the first exper-
iment. We analyze which individual features and feature subsets are most effective
for this novel extraction task. We then evaluate our brief summaries using weighted
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F-measure and ROUGE and make an explicit comparison with the previously generated
summaries. This work focuses solely on the AMI data, for two reasons: the ICSI data
does not contain the reflexivity annotation, and the ICSI abstracts have slightly different
subsections than the AMI abstracts.

4.1 Filled Pause and Cueword Features

In these experiments we have two additional lexical features to the feature set used in
the previous section, which we hypothesise to be relevant to the meta DA identification
task. The first new feature is the number of filled pauses in each DA. This is included
because the fluency of speech might change at areas of conversational transition, per-
haps including more filled pauses than on average. These filled pauses consist of terms
such as “uh”, “um”, “erm”, “mm,” and “hmm.”

The second new feature is the presence of abstractive or meta cuewords, as auto-
matically derived from the training data. Since we are trying to create summaries that
are somehow more abstract-like, we examine terms that occur often in the abstracts of
meetings but less often in the extracts of meetings. We score each word according to
the ratio of these two frequencies,

TF (t, j)/TF (t, k)

where TF (t, j) is the frequency of term t in the set of abstracts j from the training
set meetings and TF (t, k) is the frequency of term t in the set of extracts k from the
training set meetings. These scores are used to rank the words from most abstractive to
least abstractive, and we keep the top 50 words as our list of meta cuewords. The top 5
abstractive cuewords are “team”, “group”, “specialist”, “member”, and “manager.” For
both the manual and ASR feature databases, each DA then has a feature indicating how
many of these high-level terms it contains.

4.2 Evaluation of Meta DA Extraction

We evaluated the resulting 700-word summaries using three metrics: weighted
F-measures using the new extractive labels, weighted F-measures using the old extrac-
tive labels, and ROUGE. For the second of those evaluations, it is not expected that
the summaries derived from meta DAs will fare as well as using the original extrac-
tive summaries, since the vast majority of previously extractive DAs are now consid-
ered members of the negative class and the evaluation metric is based on the previous
extractive/non-extractive labels; the results are included out of interest nonetheless.

We experimented using the AMI corpus. With manual transcripts, the feature subset
that was selected consisted of 13 features, which excluded mean F0, position in the
speaker’s turn, precedent pause, both dominance features, and filled pauses. The best
five features in order were su.idf, DA word-count, tf.idf, DA duration, and uninterrupted
duration. In the case of ASR transcription, all 19 features were selected and the best
five features were the same as for the manual transcripts.

We calculated the ROC and AUROC for the meta DA classifiers applied to the 20
test set meetings using both manual and ASR transcription. For manual, AUROC =
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0.843 and for ASR, AUROC = 0.842. This result is very encouraging, as it shows that
it is possible to discriminate the meta DAs from other DAs (including some marked as
extractive). Given that we created a new positive class based on a DA satisfying one
of four criteria, and that we consider everything else as negative, this result shows that
DAs that meet at least one of these extraction criteria do have characteristics in common
with one another and can be discerned as a separate group from the remainder.

4.3 Feature Analysis

The previous sections have reported a brief features analysis according to each feature’s
f statistic for the extractive/non-extractive classes. This section expands upon that by
examining how useful different subsets of features are for classification on their own.
While we found that the optimal subset according to automatic feature subset selection
is 13 and 19 features for manual and ASR, respectively, it is still interesting to examine
performance using only certain classes of features on this data. We therefore divide
the features into five categories of prosodic features, length features, speaker features,
structural features and lexical features. Note that we do not consider DA duration to
be a prosodic feature.

Figure 4 shows the ROC curves and AUROC values for each feature subset for the
manual transcriptions. We find that no individual subset matches the classification per-
formance found by using the entire feature set, but that several classes exhibit credible
individual performance. The length and term-weight features are clearly the best, but
we find that prosodic features alone perform better than structural or speaker features.

Figure 5 shows the ROC curves and AUROC values for each feature subset for the
ASR transcriptions. The trend is largely the same as above: no individual feature type
is better than the combination of feature types. The principal difference is that prosodic
features alone are worse on ASR, likely due to extracting prosodic features aligned
to erroneous word boundaries, while term-weight features are about the same as on
manual.
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4.4 Summary Evaluation

Figure 6 presents the weighted F-measures using the novel extractive labelling, for the
new meta summaries as well as for the summaries created and evaluated in the first
experiment. For manual transcripts, the new summaries outperform the old summaries
with an average F-measure of 0.17 versus 0.12. The reason for the scores overall being
lower than the F-measures reported in the previous chapter using the original formu-
lation of weighted precision/recall/F-measure is that there are now far fewer positive
instances in each meeting since we are restricting the positive class to the “meta” sub-
set of informative DAs. The meta summaries are significantly better than the previous
summaries on this evaluation according to paired t-test (p<0.05).

For ASR, we find both the new meta summaries and older non-meta summaries
performing slightly better than on manual transcripts according to this evaluation. The
meta summaries again are rated higher than the non-meta summaries, with an average
F-measure of 0.19 versus 0.14 and are significantly better according to paired t-test
(p<0.05).
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We would expect the new meta extractive summaries to perform better in terms of
weighted F-measure with respect to the new extractive labelling, since the classifiers
were trained in a consistent manner. However, when using the old extractive labelling
the weighted F-measures for these new summaries are also slightly higher than the F-
measures reported in the previous section. The F-measure for manual transcripts is 0.23
compared with 0.21 previously, and 0.24 for ASR compared with 0.22 earlier. This is a
surprising and encouraging result, that our new annotation and subsequent “meta” DA
extraction experiments have led not only to finding areas of high-level meta comments
in the meetings but also to improved general summary informativeness. Kappa statistics
also suggest that it is easier for annotators to agree on DAs that meet these specific meta
criteria (κ=0.45) than DAs that simply support the general abstract portion of the human
summary (κ=0.40).

We also evaluate the meta summaries using the ROUGE-2 and ROUGE-SU4 metrics
[13], which have previously been found to correlate well with human judgements in the
DUC summarization tasks [4, 12]. We calculate precision, recall and F-measures for
each, and ROUGE is run using the parameters utilized in the DUC conferences, plus
removal of stopwords.

Again the meta summaries outperform the summaries created in the first experi-
ments. For ROUGE-2, using manual transcripts, the meta summaries average a score
of 0.039, compared with 0.033 for the previous non-meta summaries.On the ASR tran-
scripts, the meta summaries scored slightly higher with an average of 0.041 compared
with 0.032 for the non-meta summaries, which is significant at p<0.05. According to
ROUGE-SU4, on manual transcripts the meta summaries outperform the low-level sum-
maries with an average of 0.066 compared with 0.061, respectively. On ASR transcripts,
the meta summaries average 0.069 compared with 0.064 for the low-level summaries.
Both differences are significant at p<0.05. Figure 7 shows the ROUGE-SU4 scores for
meta and non-meta summaries compared with human extracts of the same length.

The following two DAs from meeting TS3003c are examples of DAs that are ex-
tracted for the meta summary but not for the previously generated non-meta summary
of the same meeting.

– Speaker A: So the industrial designer and user interface designer are going to work
together on this one

– Speaker D: I heard our industrial designer talk about flat, single- and double-
curved.

4.5 Discussion

According to multiple intrinsic evaluations, our novel meta summaries are superior to
the previously generated summaries. We believe that the criteria for informativeness are
more meaningful, that the output is more flexible, and that these high-level summaries
would be more coherent from the perspective of a third-party end user.

Of the two novel feature types in the expanded features database, abstractive cuewords
are found to be very good indicators of meta DAs, while the presence of filled pauses is
much less useful. It may be the case that the presence of filled pauses would be a helpful
feature for a general extraction task but is simply not indicative of meta DAs.
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There are interesting possibilities for new directions with this research. For example,
by training on individual classes one could create a complex extractive summary that
first lists DAs relating to decisions, followed by DAs that identify action items for the
following meeting. A hierarchical summary could also be created, with high-level DAs
at the top, linked to related lower-level DAs that might provide more detail. It is also
possible that these meta summary DAs would lend themselves to further interpretation
and generation of automatic abstracts.

5 Conclusion

The aim of this work has been two-fold: to help move the state-of-the-art in speech
summarization further along the extractive-abstractive continuum, and to determine the
most effective feature subsets for the summarization task. We have shown that infor-
mative meta DAs can be reliably identified, and have described the effectiveness of
various feature sets in performing this task. While the work has been firmly in the
extractive paradigm, it has moved beyond previously used simplistic notions of “in-
formative” versus “uninformative” in order to create more informative and high-level
summary output.
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Abstract. We present SuVi - Summary Visualizer -, a generic layout-
tool which displays a multimodal summary of a meeting in either a story-
board style or newspaper-style. The system relies on constraint solving
techniques in such a way that the two layouts have been extensively
modeled in a series of constraints representing the underlying design
knowledge. While the story-board aims to give the reader an overview of
the chronological sequence of the meeting, the newspaper-layout focuses
on presenting the topics of a meeting depending on their relevance. We
also show two methods for connecting the whole AMI meeting corpus as
a large input resource for the story-board part of SuVi and present a
first end-to-end implementation of our system.

1 Introduction

One of the main goals of the AMIDA project1 is the automatic generation of
multimodal meeting summaries. Apart from their generation, there are many
ways of presenting these summaries to the user. A very appealing presentation
style has been realized by the SuVi-tool (Summary Visualizer). Based on actual
audio and video data it generates a story-board layout or displays the meeting
in the style of a newspaper.

The major task of SuVi was the modeling of the necessary design knowledge
for the layout process of the respective output presentation style. Consequently,
we implemented SuVi based on hand-generated input data for just a single
meeting. The primary goal of the development was to show the general feasibility
of a constraint-based layout approach. Later on, in order to greatly extend the
number of available input resources, we developed M2SuVi, a generic interface
to the whole AMI meeting corpus. In the compound system it is even possible
to implement different ways of filling the story-board layout with content very
quickly giving us the flexibility to adapt the system to completely new domains
in a very short amount of time.
1 Augmented Multiparty Interaction with Distance Access (AMIDA) is an Integrated

Project funded by the ECs 6th Framework Program FP6-0033812, Publication ID -
AMIDA-26, jointly managed by IDIAP (CH) and the University of Edinburgh (UK).

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 248–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This paper presents first the SuVi system in section 2 and the layout con-
straints used for the story-board part of SuVi in section 3. We elaborate the
generic interface which makes the whole AMI meeting corpus accessible for SuVi
in section 4 and show the robustness of our implementation by a batch-run over
the whole AMI corpus in section 5. Our first online end-to-end implementation
of the compound system which was configured to generate a story-board layout
of a selected part of the first AMIDA review meeting is presented in section 6.
Finally, section 7 lists related work and gives an overview of the future work in
this context.

2 SuVi

SuVi - Summary Visualizer is a constraint based layout system for the automatic
visualization of multimodal meeting summaries either in a multimedia story-
board style or in the style of a newspaper. While the newspaper component
focuses on the hierarchical topic presentation, e.g., showing more relevant topics
more prominently on the page, the story-board layout aims to represent the
chronological sequence of a meeting. Figure 1 depicts the resulting layout for the
newspaper style and an example of the story-board layout is shown in figure 4.
In this section we give a general introduction to our constraint-based layout
approach and explain the story-board layout component of SuVi.

Fig. 1. Example of a newspaper layout
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2.1 Architecture of SuVi

From a functional point of view, the constraint-based layout-system SuVi is
a self-contained, generic and parameterizable layout generator for multimodal
meeting summaries. It realizes a broad spectrum of functionalities:

– Full automatic layout generation of meeting summaries
– API for different layout-specifications
– User adaptivity by offering a variety of parameters for layout generation

Figure 2 shows the architecture of SuVi from the story-board point of view.
SuVi consists of three main components which are coordinated by a central
distributor component. The central architecture is the same as for the newspa-
per layout. The major difference is the constraint based modeling of the target
domain, the different layout objects and the varying layout manager.

The input data consists of meeting topics, speaker utterances and parameters
for the layout generation. The user can exert an influence on the topics used in
the layout and the parameters of the generation, e.g., the number of panels on
a page. Speaker utterances are used to fill the layout objects, namely text-boxes
and balloons. All of this data is analyzed and appropriately represented by the
input reader. Based on that representation, the constraint solver derives
the necessary constraint variables which are stored within corresponding layout
objects. These are are shown in the resulting layout in figure 4. The layout
objects that are used in the story-board implementation of SuVi are balloons,
panels and text-boxes. Like the input data for the layout objects, the background
images were hand-set in SuVi.

The constraint solver is comprised of the mechanisms needed to process the
layout knowledge by initially producing and then solving appropriately defined
general constraints for all layout objects. More details of these different con-
straints are given in the following section.

Finally, the layout manager component creates a corresponding layout rep-
resentation in XML-format from the instantiated layout objects. This format is
then processed by Comiclife c©, a commercial software which is used by SuVi to
render the resulting story-board layout.

Parameters

Input
reader

Distributor
Constraint

solver

Layout objects

Panel Textbox Balloon

Layout
manager

Layout
document

Topics
Speaker

utterances

Fig. 2. Architecture of SuVi
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3 Constraints

Story-board generation by SuVi distinguishes between two types of layout con-
straints: Page layout constraints and panel layout constraints. Furthermore, all
constraints are split into hard and soft constraints. The former have to be fulfilled
by the constraint solver in order to find a solution at all. The latter represent
optimizations but do not necessarily have to be fulfilled. They are used to opti-
mize found solutions with respect to the story-board specific design knowledge,
e.g., how it’s layout elements are organized in general. For example, be aware of
the effect that appropriate locations of the balloons in a panel must consider the
fact, that these locations “imply” a reading order for them, e.g., left to right vs.
top down.

The system relies on Choco2 , a constraint solver implemented in the pro-
gramming language Java. Below we describe the most important constraints in
more detail.

3.1 Hard Page Layout Constraints

These constraints model the alignment of the story-board panels on a single
page.

Page border constraints: A panel must not poke out the page margins.

Beginning constraint: The first panel is always placed on the top left position
of a page.

Panel width constraint: The panel width is determined by the panel type,
e.g., the width of a panorama panel is larger than a portrait panel, because
the first one shows the whole meeting room, while the latter shows a close-up
of a participant.

Brick wall constraint: A brick wall is the typical layout of a story-board and
modeled by this constraint. Its purpose is to emphasize the reading direction,
e.g., from left to right. Thus the leftmost panels in subsequent rows must
not have the same width. Figure 3 shows a typical brick wall layout.

Maximum balloon constraint: Every panel must not contain more than five
balloons.

Fig. 3. A typical brick wall layout

2 http://choco-solver.net
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3.2 Hard Panel Layout Constraints

These constraints control the positioning of text-boxes and speech balloons inside
a single panel.

Balloon border constraint: Balloons must not exceed the borders of a panel.

Text-box placement constraint: The alignment of the speech balloons must
reflect the natural reading direction of the user, e.g., from the top left corner
to the bottom right corner.

3.3 Soft Constraints

Soft constraints are variables defined over a range of values. Their optimization
is used to find the best layout solution out of a number of valid solutions.

End of line constraint: In order to exploit the available space of each line,
the horizontal gap between the last panel of a line and the right border of
the page should be minimized.

End of page constraint: The vertical gap between the last panel (i.e., last line)
of a page and the bottom of that page should also be minimized. This con-
straint is used for for the optimal utilization of the available space on a page.

3.4 Resulting Layout

The story-board that results from the application of all the constraints shown
above on the hand-generated input is shown in figure 4. Text-boxes are rendered

Fig. 4. Story-board layout of meeting IS1003b
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in green in the upper left corner of the panels which fulfills the text-box place-
ment constraint. The panels are positioned according to the brick wall constraint,
e.g., the first two panels in the first row have different widths unlike the first
two panels in the second row. Also, all balloons fit into the panels as required
by the balloon border constraint. The tails of all balloons are statically set in
dependence of the panel type. The problem of overing the faces of the speakers
is addressed in section 7.

4 M2SuVi

The AMI meeting corpus offers a huge amount of annotated meetings and several
video streams for each meeting but not explicitly contains story-board annota-
tions. In order to use the data as input for SuVi, we need to find a mapping
between the available corpus resources and the layout objects we described in
the previous chapter. Therefore, we developed M2SuVi - meeting to SuVi. The
following layout elements need to be filled automatically:

– The content of the text-boxes
– The content of the balloons
– Background images for the panels

SuVi needs the content for the balloons and text-boxes as complete sentences
which are not available in the AMI corpus. Second, SuVi uses all sentences which
are fed into the system for the layout. It is impossible to use all the data in a
meeting and therefore a selection of relevant data for a story-board layout has
to be made. We elaborate and implement two promising approaches for filling
the layout objects with content taken from the AMI corpus.

First, we give an overview of the general system architecture in section 4.1.
Then we describe the two approaches to make AMI corpus data available for
automatic summary generation in section 4.2 and 4.3, respectively.

4.1 Architecture of M2SuVi

Figure 5 depicts the architecture of M2SuVi. The Input Reader of the system
needs appropriate input data in the Nxt-Format3 from the AMI corpus. Depend-
ing on the particular Content Creator the data are then extracted and converted
into a special internal content representation which is depicted in figure 6. The
linked Hash-map shown on the left contains the content for each topic. Every
topic in turn comprises the contents for the text-box shown in green in figure
4 and the content for the assigned balloons. We additionally store the speaker,
time and topic for each balloon to preserve the reading order. For filling the
panels with appropriate pictures the Image Extractor uses the available video
streams of a meeting and take time synchronized still-pictures. Otherwise, it uses
a default picture. As a fallback for cases in which the required video stream is not
3 http://www.ltg.ed.ac.uk/NITE/index.html
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available. Section 4.4 describes this extraction process in more detail. Finally,
the Output Writer uses the resulting data to output the story-board file which
is understood by SuVi.

4.2 Content Creation with Abstract Summaries

Our first implementation gathers input data for the story-board generation from
the AMI-corpus based on the abstract summaries of a meeting. Abstract in that
sense, that they contain a hand written summary of the whole meeting. They are
divided in the sections “abstract”, “decisions”, “action points” and “problems”.
In order to cover the whole meeting, we use the abstract-section of a summary
for our approach. In the corpus, each sentence of the abstract summary is linked
to a series of actually uttered sentences in the meeting. Moreover, it summarizes
all these linked sentences.

The idea is to transform this type of annotation into a story-board layout
by taking the sentence from the abstractive summary for a text-box while all
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Fig. 7. Following the links in the abstractive summaries

linked sentences are taken for filling the balloons. Figure 7 illustrates the relation
between a summary link from the abstractive summary, its linked sentences and
the role they play in the story-board layout. In order to restrict the number of
balloons for each summary sentence, the maximum number of links to follow can
simply be set by a system parameter.

4.3 Content Creation with Extractive Summaries

Our second implementation of a story-board generation out of the AMI-corpus
is based on the extractive summaries and the topic segmentation. The advan-
tage of this approach is that there are already automatic tools that produce
this kind of data. However, this implementation is more complex because the
extractive summaries are not linked in the corpus. Therefore, we cannot benefit
from existing corpus structures. Instead, we have to compute the relations of the
story-board elements to each other, e.g., which topic a sentence of an extractive
summary belongs to.

Figure 8 shows the strategy for filling the balloons and text-boxes in this case.
Every word in a meeting is assigned to a topic and stored in an appropriate data-
structure. The corpus contains a set of default-topics, which are used throughout
for annotation. We use these default-topics in the order in which they occur in
a meeting and map every word to the topic it belongs to (see the left part of
figure 8).

Every balloon is filled by one sentence of the extractive summary. Again,
every sentence of the summary is used for the content of the story-board but in
this case every extractive summary sentence fills one balloon. Remember that
in the previous section we used the sentences of the abstract summary for the
text-boxes, not the balloons. Since we have to build a mapping from every word
to a topic, we can in turn assign a topic to every sentence because topics do not
change within a sentence.

To fill the text-boxes with content we simply take the topic description as it
exists for each topic of the AMI corpus. To augment the content of the text-boxes,
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Fig. 8. Creating story-board content with extractive summaries

one could simply extend these topic descriptions manually by providing more
elaborated sentences.

4.4 Still-Pictures Extraction

The extraction of still pictures is a procedure running independently of the
content extraction step. There are two types of panels in SuVi: Portrait-panels
and Panorama-panels The first type of panel is a close-up of a single speaker. It
is chosen if SuVi identifies a dominant speaker for one panel (i.e., the speaker
who made most of the utterances in a panel). In the corpus, there is an individual
video stream available for each speaker from which we extract a time synchronous
still-picture. Depending on the dominant speaker of a panel, the appropriate
video stream is selected for still-picture extraction. The second type of panel is
used if no dominant speaker can be identified. We then choose the video stream
which shows the general view, e.g., the meeting room and all participants. If
one of the video files cannot be found, e.g., if a reduced version of the system is
running offline on a small mobile device, we implemented a simple fallback and
use previously stored default pictures for the missing stream.

5 Batch-Run over the AMI-Corpus

In order to prove the robustness of the two components of our system, we did
a batch-run over all available meetings in the AMI-meeting corpus. We did this
for the two strategies we described in the previous two sections (extractive and
abstractive summaries).

M2SuVi generated at most six topics per page and used a maximum of eight
balloons per topic. For reasons of simplicity, we used default pictures for the
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Table 1. Batch-run results

Mode avg. runtime (s) result no result total successful layouts in %

Extractive 48.8 120 3 123 97.6

Abstractive 86.1 86 12 98 87.8

layout. The batch-run was done on an Intel Core2Duo processor running at 2.2
GHz with 2 GB of working memory.

Table 1 shows the results for both of our components and demonstrates that
a solution is possible for nearly every input as shown in the sixth column. There
were a few meetings, however, for which no layout was possible because of errors
in the corpus, e.g., dead links. Furthermore, an abstract summary is not available
for every meeting, which explains the difference of total meetings in the fifth
column. The average runtime in seconds of the constraint solver is shown in the
second column.

6 Automatic End-to-End Story-Board Generation

In order to show the applicability of our generic approach in an end-to-end
implementation for a completely different domain and in a different use case,

Fig. 9. Story-board layout of the first
AMIDA review meeting

we tested the system on a selected part
of the first AMIDA review meeting. Here
is a short description of this special
approach:

In contrast to the data in the AMI-
corpus, the review meeting data was
completely processed by automatic tools
from The University of Sheffield (ASR),
The University of Edinburgh (topic seg-
mentation & labeling) and The IDIAP
Research Institute in Martigny (record-
ings). An ASR engine provided the
raw data and the necessary founda-
tion for further processing. After that,
the ASR output was automatically con-
verted into the required NXT-format
and segmented into topics.

Both components of our system,
SuVi and M2SuVi, proved to be very
robust under the new input data and
in a completely new domain. Although
the data was previously unknown, af-
ter resolving some minor formating is-
sues it was possible to do a provisional
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story-board layout of the review meeting. However, we realized, that the balloons
got too large and covered the whole panel. A newly invented “spurts”-layer
linked far more words per comic-balloon than the original data, i.e. the links
in the abstractive and extractive summaries. We quickly limited the content-
size of the comic-balloons and added “...” at the end of each comic-balloon to
indicate that there is more text available. Due to technical problems, there were
no video streams available. However, we could benefit from our fallback strategy
here by simply using default pictures which were taken during the meeting with
a digital camera. Figure 9 shows the resulting story-board layout of the first
AMIDA review meeting.

7 Conclusion and Future Work

In this paper we described SuVi, an automatic layout tool for meeting sum-
maries. Due to the initial restrictions of the input for this tool, M2SuVi was
developed which made the complete AMI meeting corpus accessible for story-
board generation.

The generation of layouts is robust and works fairly well, even in a completely
new domain as described in section 5 and 6. But too often the faces of the speak-
ers are superposed by the balloons. In the next version of SuVi, we will make
use of image processing techniques to detect faces and set dynamic constraints in
such a way, that the faces are kept free of balloons. The detection of the face po-
sitions will also give us the possibility to optimize the positioning of the balloon
tails and adjust them to the mouth of the person. Actually, they are statically
set simply depending on the panel type. SuVi now uses a one page layout by
default. Depending on the number of how many topics/balloons available, we
will implement a multi page layout automatically.

With our project partner Philips we are currently implementing a server-
version of our system which takes the user input from a web page, generates the
story-board in the background and sends back the result as a Scalable Vector
Graphic (SVG) using a newly developed proprietary display component. The
http-client will run on an embedded platform making it necessary to replace the
proprietary ComicLife c©-format. The final version will feature output formats in
jpeg, png, pdf and plain svg.

We are also in negotiation with industrial partners for commercial use of this
technology.
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Abstract. We present a novel probabilistic model for user interaction
in image retrieval applications which accounts for consistency among
the retrieved images and considers the distribution of images in the
database which is searched for. Common models for relevance feedback
do not consider this and thus do not incorporate all available information.
The proposed method is evaluated on two publicly available benchmark
databases and clearly outperforms recent competitive methods.

1 Introduction

This work presents a probabilistic model to handle user interaction in informa-
tion retrieval applications. This user interaction is usually accomplished using
some feedback regarding the relevance of the information retrieved by the sys-
tem. The model presented is for general information retrieval systems but here
we focus on image retrieval. Image retrieval has been investigated since the 80’s
and, in the 90’s, content-based image retrieval (CBIR) became an active area
of research. In CBIR, the objective is to find relevant images where the query
is often described by an example image of the type of images that the user is
looking for. In practice, CBIR is still far away from being a solved problem.
One way to increase retrieval performance is to consider user feedback, i.e. a
user starts his query with an example image and is then presented with a set of
hopefully relevant images; from these images the user selects those images which
are relevant and which are not (possibly leaving some images unmarked) and
then the retrieval system refines its results, hopefully leading to better results
after each iteration of user feedback.

Related Work. Relevance feedback has been under investigation in the field of
image retrieval and information retrieval nearly as long as the field of information
retrieval exists [1]. An overview of the early related work on relevance feedback
in image retrieval is given in [2]. Most approaches use the marked images as
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individual queries and combine the retrieved results. More recent approaches
follow a query-instance-based approach [3] or use support vector machines to
learn a two-class classifier [4]. All approaches have in common that only the
feedback-images are considered and the database to be searched for relevant im-
ages is not considered. In this work, we use a set of images from which images
are retrieved in a fully probabilistic way to determine the relevance probability
of candidate image sets. This leads to a significant boost in performance and
also opens new ways to integrate consistency checks into the retrieval proce-
dure. Another related field of research is browsing of image and video databases.
The approach most closely related to the approach presented here is Bayesian
browsing [5]. The formulation presented here, follows the concepts for interactive
pattern recognition proposed in [6].

2 Methodology

This section presents the methodology followed in the present work. First, a
basic notation is introduced followed by our proposed probabilistic model and
a greedy algorithm. Notation and modelling are particularized for the image
retrieval problem but they can be easily adapted to any information retrieval
system.

2.1 Notation and Probabilistic Model

Let U be the universal set of images and let C ⊂ U be a fixed, finite collection
of images. The initial query image proposed by the user is q ∈ U . We assume
the user “has in mind” some relevant set of images R ⊂ C. This set is unknown
and the system’s objective is to discover n images of it, among the images in
C. The interactive retrieval process starts with the user proposing a particular
query image, q ∈ U . Then the system provides an initial set X ⊂ C of n images
that are “similar” to q according to a suitable distance measure. These images
are judged by the user who provides a feedback by selecting which images are
relevant (and, implicitly, which are not relevant). Such feedback information is
used by the system to obtain a new set of images X and the process is repeated
until the user is satisfied, which means that he/she considers all images X to be
relevant.

At any step of this process, let the user feedback be denoted by F = (Q+ ∪
Q−) ∈ Cm, where m ≥ n is the number of images supervised by the user1, Q+ ⊂
R are the images that the user has considered to be relevant and Q− ⊂ C − R
are the images that the user has considered to be non-relevant. Let CF = C −F
be the set of the images in the collection that have not been retrieved. Usually
the initial query is considered to be in the set of relevant images, q ∈ Q+. In the
following notation, m, r and r̄ are the sizes of F, Q+ and Q−, respectively.
1 As F can be obtained as a result of several feedback iterations, the total number of

supervised images m, can be greater than the number of images retrieved in each
iteration n.
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To optimize the user experience, we propose to maximize the probability that
the images in X are relevant according to F . That is, the images in X should
be “similar” to the images in Q+ (and may also be similar among each other)
and “different” from images in Q−. Formally:

X̂ = arg max
X∈Cn

Pr(X | C, q, F ) (1)

Since C and q are fixed, to simplify notation we will drop these conditions from
now on. Now, applying Bayes’ rule,

X̂ = arg max
X∈Cn

Pr(F | X) · Pr(X) (2)

For the first term of (2) we can use a model directly based on image distances:

Pr(F | X) ∝
∏
x∈X

P (F | x) (3)

where each term in the product2 is a smooth version of the classical class-
conditional probability estimate based on nearest neighbors [7] using a suitable
image distance d(·, ·):

P (F | x) =

∑
q∈Q+ d(q, x)−1∑
q∈F d(q, x)−1 (4)

Note that we use a product to combine probabilities in (3) (rather than a sum).
This enables using the greedy search strategy proposed in Section 3 to find
approximate solutions to (2).

For the second term of (2), we assume that the prior probability of a set X
should be high if it is “consistent”; that is, if all its images are similar among
them. Applying the chain rule, we obtain:

Pr(X) = Pr(x1, x2, . . . , xn)
= Pr(x1)Pr(x2 | x1), . . . , P r(xn | x1 . . . xn−1) (5)

As before, each term of this product can be adequately modeled in terms of
image distances:

Pr(xi | x1 . . . xi−1) ∝ P (x1 · · ·xi)
P (x1 · · ·xi−1)

(6)

where

P (x1 · · ·xi) =
1

i(i − 1)

i∑
j=1

i∑
k �=j,k=1

d(xj , xk)−1 (7)

2 Note that only the notation Pr() stands for true probabilities; we abuse the notation
by letting P() denote arbitrary functions used as a models.
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Intuitively, equations (4) and (6), respectively, measure relevancy and con-
sistency of images in X . Therefore, in practice, it is convenient to balance the
importance of both factors by means of a parameter α, where α = 1 denotes
that no consistency information is used and α = 0.0 denotes that only consis-
tency information is considered. Taking this into account, equation (2) can be
expanded as:

X̂ ≈ arg max
X∈Cn

P (F | x1)Pr(x1)
n∏

i=2

P (F | xi)α

(
P (x1 · · ·xi)

P (x1 · · ·xi−1)

)1−α

(8)

In the following sections we describe an efficient procedure to find an approxi-
mately optimal set of images X .

3 Greedy Approximation Relevance Feedback Algorithm

We propose an algorithm to approximate the maximization presented in (8).
This algorithm works as follows. First of all the r images in Q+ are selected as
the first r images in X̂. The remaining n− r images are to be selected from the
set CF since the images in Q+ and Q− have just been supervised by the user.
This approximation entails a slight modification of the maximization in (8):

X̂ ≈ Q+ ∪ arg max
X∈Cn−r

F

P (F | xr+1)Pr(xr+1)

nY
i=r+2

P (F | xi)
α

„
P (x1 · · ·xi)

P (x1 · · ·xi−1)

«1−α

(9)

We assume that Pr(x) follows an uniform distribution, so the term Pr(xr+1) is
constant in the maximization process and can be dropped. To solve the maxi-
mization, the t-best images, t ≥ (n − r), with the highest values of P (F | xi)
are determined, we refer to this set as B. Each image that belongs to B is ten-
tatively hypothesized to be the first image, xr+1. Subsequently, the following
images can be determined by greedy maximization of the index (9), using the
GARF algorithm shown in Figure 1.

3.1 A Simplified Version of GARF

If α = 1, image consistency is not taken into account and thus the expression to
maximize becomes

X̂ = Q+ ∪ arg max
X∈Cn−r

F

n∏
i=r+1

P (F | xi), (10)

which further simplifies the procedure. To maximize this expression, only those
images with maximum values for P (F | xi) have to be chosen, yielding the
GARFs algorithm shown in Figure 2.

Due to this simplification, GARFs is no longer a greedy algorithm but it is
an exact solution to (10) instead. We prefer to refer to this algorithm as GARFs
because it can be considered as a simplified version of GARF. The computational
complexity of GARFs is the same as the relevance feedback baseline methods
presented in section 4.2.
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X̂=GARF(C, Q+, Q−)
{

for each x ∈ CF

Vx = P (F | x)
end for
B = select(V, t)
max = −∞
for each x ∈ B

xr+1 = x
S = {xr+1}
for i = r + 2 . . . n

xi = arg maxx∈B−S P (F | x)α
` P (xr+1,...,xi−1,x)

P (xr+1,...,xi−1)

´1−α

S = S ∪ {xi}
end for
sc = P (F | xr+1)

Qn
i=r+2 P (F | xi)

α
` P (xr+1...xi)

P (xr+1...xi−1)

´1−α

if (sc > max) {
max = sc
SBest = S

}
end for
X̂ = Q+ ∪ SBest
return X̂

}

Fig. 1. GARF: Greedy approximative algorithm to determine the most relevant and
consistent images. The value of t has to be tuned empirically.

X̂=GARFs(C, Q+, Q−)
{

for each x ∈ CF

Vx = P (F | x)
end for
B = select(V, n − r)
X̂=Q+ ∪ B
return X̂

}

Fig. 2. GARFs: Simplified GARF algorithm not considering image consistency

4 Experiments

The proposed algorithm is evaluated using the two well know data sets,
Corel/Wang and MSRC published by the Machine Learning and Perception
Group from Microsoft Research, Cambridge, UK. For the sake of experimental
clarity and reproducibility, in all the experiments, relevance feedback was simu-
lated, i.e. no real users where involved. Nevertheless the methods proposed here
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(a)

(b)

Fig. 3. Example images from (a) the WANG database and (b) the MSRC database

can directly be used with any user interface that allows users to mark images
as relevant and/or non-relevant in interactive retrieval processes such as those
presented in [8,9].

WANG Database. It consists of a subset of 1,000 images of the Corel stock
photo database which have been manually selected and which form 10 classes
of 100 images each. Example images are shown in Figure 3 (a). The WANG
database can be considered similar to common stock photo retrieval tasks with
several images from each category and a potential user having an image from a
particular category and looking for similar images which have cheaper royalties or
which have not been used by other media. The 10 classes are used for relevance
estimation: given a query image, it is assumed that the user is searching for
images from the same class, and therefore the remaining 99 images from the
same class are considered relevant and the images from all other classes are
considered irrelevant.

MSRC Database. It was published by the Machine Learning and Percep-
tion Group from Microsoft Research, Cambridge, UK and is available online3.
It consists of 4320 from 33 classes such as aeroplanes, bicycles/general, bicy-
cles/sideview, sheep/general, sheep/single and is generally considered a difficult
task [10]. Some example images from this database are shown in Figure 3 (b).
We use this database in two different setups. In the first setup, we use 10% of the
data as query images and the rest is used as image collection C. In the second
setup, we use all images from classes with less than 50 images as queries in a
leaving-one-out manner. The latter setup allows for investigating the effects that
occur on larger databases where only a small fraction of all images are considered
relevant.

4.1 Image Feature Extraction

For our experiments, we choose to represent our images using color histograms
and Tamura texture histograms. Although there are image descriptors that
3 http://research.microsoft.com/research/downloads/Details/b94de342-60dc-

45d0-830b-9f6eff91b301/Details.aspx

http://research.microsoft.com/research/downloads/Details/b94de342-60dc-45d0-830b-9f6eff91b301/Details.aspx
http://research.microsoft.com/research/downloads/Details/b94de342-60dc-45d0-830b-9f6eff91b301/Details.aspx
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perform far better for special applications, it was recently shown that these
features are a very reasonable baseline for general image databases [11]. Fur-
thermore, the probabilistic model for relevance feedback investigated here, can
be applied on top of any image descriptor that allows for distance calculation
between images. In the following, we describe how these features are compared
and obtained.

The features used are represented as histograms, as it is described in the next
sections. To compare the histograms, we use L1 distance, which was shown to
be identical to histogram intersection if the histograms share the same bins

d(h, h′) =
∑I

i=1 |hi − h′
i|, (11)

where h and h′ are two histograms to be compared and hi and h′
i are the i-th

bins.

Color Histograms. Color histograms are among the most basic approaches and
widely used in image retrieval [12,13,14]. To show performance improvements in
image retrieval, systems using only color histograms are often used as a baseline.
The color space is partitioned and for each partition the pixels with a color within
its range are counted, resulting in a representation of the relative frequencies of
the occurring colors. We use the RGB color space for the histograms, and split
each dimension into 8 bins leading to an 83 = 512 dimensional histogram. We
observed only minor differences with other color spaces which was also observed
in [15].

Tamura Features. In [16] the authors propose six texture features correspond-
ing to human visual perception: coarseness, contrast, directionality, line-likeness,
regularity, and roughness. From experiments testing the significance of these fea-
tures with respect to human perception, it was concluded that the first three
features are very important. Thus, in our experiments we use coarseness, con-
trast, and directionality, calculate each of these values in a neighborhood for
each pixel, quantize each of these values into 8 discrete values and create a 512-
dimensional joint histogram for each image. In the QBIC system [13] histograms
of these features were used as well.

4.2 Baseline Methods

The proposed approach is compared with some baseline methods:

Simple Method. The simple method is accomplished by performing the next
search of n − r images among the set of images in CF , keeping the relevant
images, and performing the next search exactly equal as the initial one but over
this reduced collection CF .

Relevance Score. Relevance score (RS) was proposed by [3], and has been in-
spired by the nearest neighbor classification method. Instead of only finding the
best match for each query image among the database images, for each database
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image only the best matching query image is considered among the positive and
negative query images. The ratio between the nearest relevant and the near-
est non-relevant image is considered for ranking the images. In [3], the RS is
computed as

RS(x, (Q+, Q−)) =

⎛
⎝1 +

min
q+∈Q+

d(x, q+)

min
q−∈Q−

d(x, q−)

⎞
⎠

−1

(12)

and then images are ranked such that the images with smallest relevance score
are presented first.

Rocchio Relevance Feedback. Rocchio’s method for relevance feedback [1]
can be considered a de facto standard in textual information retrieval. In CBIR,
it has been investigated in the context of the GIFT system [17]. In Rocchio
relevance feedback, the individual query documents are combined into a single
query according to

q̂ = q + w+

⎛
⎝ ∑

q+∈Q+

q+

⎞
⎠− w−

⎛
⎝ ∑

q−∈Q−
q−

⎞
⎠ , (13)

where q̂ is the new query, q is the query from the last feedback iteration and w+

and w− are weighting factors to determine the influence of relevance feedback,
commonly the parameters are chosen w+ = |Q+|, w− = |Q−|.

Once, q̂ is determined it is used to query the database and find the most
similar images.

4.3 Results

In all the experiments, we set the number of images to be retrieved to n =
20 and the query image is always contained in set of retrieved images. Up to
four feedback iterations were performed. The precision was measured for each
iteration obtaining 5 values for each method P1, . . . , P5. The precision is the ratio
of the relevant images among the n retrieved ones and is given in percentage.

WANG database. For the evaluation of the different relevance feedback meth-
ods on this database a Leaving-One-Out approach has been followed. Every
image is used as query and the rest of images are used as reference set C.

The results for the database are shown in Table 1. The simplified version of
GARF obtains the best results. It is worth to mention that the user is interested
to obtain high precision values for the first feedback iterations, and in this case,
GARFs is the best method.

Figure 4 shows the results of the GARF algorithm for the first feedback iter-
ation (P2) with varying α-parameter and the size of the set B. The α parameter
is varied from 0 (no consistency information considered, simplified GARF) to 1
(only consistency information considered). The size of the set B, t-parameter, is
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Table 1. Experimental results on the WANG database

Method P1 P2 P3 P4 P5

Simple 73.6 83.2 88.0 91.0 92.9
Rocchio 73.6 92.7 97.3 99.2 99.8
RS 73.6 92.2 97.8 99.5 99.9
GARFs 73.6 94.5 98.9 99.9 99.9
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Fig. 4. Results on the WANG database using different values of α and t

given relatively to the number of relevant images still needed n− r. The results
obtained for t = 100% does not vary with respect to α because this value means
that B has only n−r images.The highest precision for the first feedback iteration
is 94.62 and is obtained using GARF with α = 0.3 and t = 140%.

MSRC database. First we consider the setup where 10% of the images are
used as queries and the rest as reference set. The results for this database are
shown in Table 2. Again, the simplified version of GARF obtains the best results.
The improvement of the proposed approach becomes more significant as more
interaction steps are used. This effect is probably due to the additional relevant
samples which allow for much better probability estimation.

Figure 5 shows the results of the algorithm GARF for the first feedback iter-
ation (P2), varying the parameter α and the size of the set B.

The highest precision for the first feedback iteration is 62.92 and is obtained
using GARF with α = 0.1 and t = 140%. In this case the use of GARF does not
produce any significant improvement over the simplified version. This is due to
the fact that in this database images from the same class may differ significantly
and so the consistency factor of the probabilistic model does not help to improve
the precision of the system. An example of images that belongs to some of the
classes is showed in Figure 6.
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Table 2. Results using different relevance feedback methods on the MSRC database

Method P1 P2 P3 P4 P5

Simple 45.5 55.2 61.0 65.3 68.4
Rocchio 45.5 60.8 69.6 75.1 78.8
RS 45.5 60.6 68.5 75.0 79.9
GARFs 45.5 62.9 73.4 80.0 84.2
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Fig. 5. Results on the MSRC database using different values of α and t

(a)

(b)

Fig. 6. MSRC example of the differences among images of the same class. (a) office
(b) benches and chairs.

MSRC database few relevant images. A more challenging experiment has
been performed for the MSRC dataset considering as query images only those
images that belong to classes with less than 50 images. In this case we used
only 263 images from 9 different classes. This experiment aims at simulating a
real scenario when the user is interested in images which are seldom among the
searched database and thus this task is more closely related to searching images
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Table 3. Results using different relevance feedback methods on the MSRC subset with
few relevant images

Method P1 P2 P3 P4 P5

Simple 18.4 23.7 27.7 31.1 33.7
Rocchio 18.4 26.5 32.1 36.3 39.8
RS 18.4 24.4 30.1 35.4 39.8
GARFs 18.4 27.0 35.4 42.6 48.5

in the internet. The results for these experiments are show in Table 3 for the
different methods from the literature and for the simplified GARF algorithm.

Again, GARFs obtains the best results but opposed the experiments pre-
sented in the previous section, here the difference between GARFs and the other
methods is much bigger, which underlines the effectiveness of the proposed
model. The relative improvement of GARFs in the fifth feedback iteration is
higher than 25% over the second best technique (RS). The proposed approach
entails a good technique for image search problems on real conditions.

5 Conclusions

We present a novel probabilistic model for relevance feedback in image retrieval.
In contrast to other approaches, we incorporate consistency among the retrieved
images in a theoretically sound way. A simpler model which does not take into
account such consistency is also proposed.

The results obtained by this simplified version are already clearly better than
the results obtained by the state-of-the-art techniques tested. On the other hand
the incorporation of the consistency model can increase the performance of the
retrieval system even further. The improvements contributed by this consistency
model have shown to be effective mainly when the classes of the images are
consistent enough under an appearance point of view.

While these improvements are really marginal, they show that the novel ap-
proach to information retrieval proposed here provides a suitable framework to
develop new techniques that better take advantage of all the information sources
available.
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1 Introduction

Participants in a meeting often mention documents containing facts that are
currently discussed, but only few documents are at hand. Searches could be per-
formed within a document management system for the right piece of information,
but the participants in a meeting usually do not have the time to perform such
operations frequently during the meeting. Moreover, even where they do have
their documents available, few groups have access to recordings of their past
meetings, much less an efficient device for searching them. And when browsing
through the recordings of previous meetings, users do not have the time to search
for additional information among the meeting documents.

Therefore, a system that would provide tailored access to potentially relevant
documents or recorded meetings, based on ongoing discussions, could be very
valuable in improving group decision-making. Such an Automatic Content Link-
ing Device (ACLD) could be applied to at least two scenarios [1]: the device
could be used online during a meeting to display potentially relevant documents
in real time (meeting assistant), or it could be used offline to browse a past
meeting that was recorded, enriching it with potentially relevant documents
(meeting browser). These scenarios are broadly related to the following options
observed in the literature. Conceptually, the content linking mechanism is the
same in both cases, only the resources that are available and the constraints of
producing results in real-time are different.

1. Just-in-time retrieval [2,3,4]: participants to a meeting are constantly given
suggestions about documents (including excerpts of previous meetings) that
are potentially relevant to the ongoing discussion. Participants are free to
ignore them, or to start using them to enhance the discussion, e.g. with
figures, precise facts, or decisions made in previous meetings.

2. Document/speech alignment for meeting browsers [5,6,7]: users of a meeting
archive can view the recordings of previous meetings augmented with related
documents, regardless of whether the participants to the meeting referred
to them explicitly or not. This can be essential for meetings whose main
purpose is to discuss a long document, e.g. a report, and might provide a
quicker understanding of the meeting context.

The AMIDA Content Linking Device (ACLD) demonstrates the basic concept
of tailored access to a group’s history using a set of four meetings from one of the
groups recorded in the AMI Meeting Corpus [8]. Although the primary use of
such a device would be during live meetings, we need to be able to demonstrate
the concept even when there is no meeting happening. Our demonstration replays
the group’s last meeting (ES2008d) to simulate a live meeting, treating segments
from the three previous meetings (ES2008a-c) and associated documents as the
group history to be linked. In the recordings, the group carries out a role-playing
exercise in which they pretend to be a design team specifying a new kind of
remote control. Each group member is given a unique role to play in the team
and carries out individual work as well as taking part in the four meetings. Final
design decisions are made in the last meeting, which is ES2008d, therefore a
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number of project documents and fragments of previous meetings are relevant
to the discussions in this meeting. The past documents available for linking
include reports, emails, and presentations given during the first three meetings,
plus segments derived from the first three meetings by dividing them into 200
second chunks.

The remainder of the paper is organized as follows. Section 2 outlines the
concept, architecture, and components of the ACLD, which are described in
detail in the various subsections of Section 3. Brief implementation notes for
the proof-of-concept prototype appear in Section 4, while evaluation results and
perspectives for future work are given in Sections 5 and 6 respectively.

2 Concept and Architecture

The Automatic Content Linking Device performs searches at regular intervals
over a database of meeting-related documents and pseudo-documents. The search
criterion is constructed based on the words that were recognized automatically
from the meeting discussion, thanks to online or offline automatic speech recog-
nition (ASR)1. The audio signal is captured in an instrumented meeting room [9]
or elsewhere, but recording conditions have a strong influence on the recognition
accuracy. If some pre-specified terms or keywords are recognized, then they re-
ceive greater weight in the subsequent query.

The results are presented as a list of document names ordered by relevance,
which can be empty if no document matches enough the words that were recog-
nized. A persistence (smoothing) mechanism ensures that documents which are
often retrieved remain some time at the top of the list. A user interface offers
the participants quick access to the content of the documents that are retrieved,
if they need to search them for valuable information.

These functionalities are supported by a number of modules that communi-
cate through a subscription-based client/server architecture called ‘the Hub’ [10].
The Hub allows the connection of heterogeneous software modules, which may
operate remotely, and ensures that data exchange is extremely fast – a require-
ment for real-time processing of human interaction. Data circulating through
the Hub is formatted as timed triples (time, object, attribute, value), and is also
stored in a special-purpose database, which was designed to deal with large-scale,
real-time annotation of audio and video recordings. ‘Producers’ of annotations
send triples to the Hub, which are received by the ‘consumers’ that subscribed
to the respective types; consumers can also query the Hub for past annotations
and metadata about meetings.

The architecture of the ACLD is shown in Figure 1, while the main compo-
nents are first outlined below and then described in the following subsections.

Document Bank Creator (DBC): Gathers documents that are of potential
interest for an upcoming meeting. In the current implementation, this is

1 An online ASR module was recently developed in the AMIDA project, and its con-
nection to the ACLD is under work at the time of writing.
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Fig. 1. Architecture of the AMIDA Automatic Content Linking Device

done semi-automatically from IDIAP’s multimodal media file server (MMM,
see http://mmm.idiap.ch), which gives access to the entire AMI Meeting
Corpus, including media files, documents, metadata and annotations.

Document Indexer (DI): Creates an index over the document bank prepared
by the DBC for the upcoming meeting.

Query Aggregator (QA): Performs document searches at regular time in-
tervals, using words and terms that are recognized automatically from the
meeting discussion, and produces a list of document names, ordered by rel-
evance, based on the search results and on the persistence model explained
below.

User Interface (UI): Displays results from the QA and offers quick access to
text, HTML and source versions of documents, as well as to metadata and
summaries for past meetings.

3 Components of the Automatic Content Linking Device

3.1 User Interface

We start the description of the ACLD with the User Interface, as this encom-
passes most of the functionalities of the system. In the online scenario of use,
a connection must initially be established between the ASR device and a live
meeting that is captured in a smart meeting room. In the offline scenario (or to
demonstrate the online one from past recordings), the only information initially
given to the UI is the identifier of a completed meeting to display. This allows the
UI to retrieve via the Hub all the pointers to the related media, and to subscribe

http://mmm.idiap.ch
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Fig. 2. Snapshot of AMIDA ACLD’s user interface

to all the annotations that will be displayed, including the Content Linking
annotations produced by the Query Aggregator. For demonstrations and for
meeting browsing, it is more convenient for repeatability reasons to use a com-
pleted meeting (ES2008d in the present version), hence, a number of metadata
variables are hard-coded into the UI.

Figure 2 shows a snapshot of the UI over meeting ES2008d, three minutes
from the beginning of the meeting. On the left, a list of keywords, referring to
important concepts for the group’s activity, reassures the user about the search
terms being used, as they were recognized from the audio. Every 30 seconds, a
newly recognized keyword set is added at the top, with the timestamp shown
as a horizontal line. The central column, which scrolls in the same way as the
keywords, shows the six most relevant documents for that time in the meeting,
with font size chosen to reflect the hypothesized degree of relevance. At the
bottom right there is a static display showing the three meetings in the history
– giving access to their contents, metadata and summaries – and above that,
the room-view video of the ongoing meeting (with the audio in the case of past
meetings).

The UI displays at any given moment in a meeting at most N documents
ordered by relevance, based on the data it receives from the QA, which contains
information about the documents’ URL, their type and relevance, meeting time
and detected keywords. This list is constantly updated as the meeting proceeds.
The interface offers the users several possibilities for interacting with documents,
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depending on each document type. For a meeting fragment, hovering over its
label displays its extractive summary (obtained on-the-fly by the UI from the
Hub), while clicking on the label displays the ASR transcript. For documents,
clicking on their label displays their content in a text window, from where a
version formatted in HTML can also be obtained. This file format was selected
as it preserves a significant part of the original document’s formatting, and is
much quicker to visualize than opening the source document with its dedicated
program, which is quite slow for MS Office documents.

3.2 Document Bank Creator

The Document Bank Creator is run offline before a meeting to create the bank
of documents and pseudo-documents that will be searched during the meeting.
This is a preparation task, which copies documents in a separate folder, in prepa-
ration for the Document Indexer (alternatively, a metadata layer with pointers
to documents could be generated to avoid copying). In a less supervised scenario
for the future, the DBC could determine automatically the documents that are
potentially relevant, based on the project or series the meeting belongs to.

The DBC includes documents, fragments of previous meetings, slides, and
emails. The fragments of past meetings are currently 200-second chunks of the
ASR transcript, but a more logical segmentation based for instance on topics [11]
is under study. The DBC accepts heterogeneous file formats, and extracts text
from them using calls to the proprietary software that created the files. In the
process, the module also generates HTML versions of each document, which are
easier and quicker to visualize than the original MS Office versions.

3.3 Document Indexer

The Document Indexer uses the text version of the files associated to the current
meeting by the DBC to construct an index, i.e. a data structure that optimizes
word-based search over the document set, which can become quite large over
time. The index can also be conceived of as a new annotation layer, represented
logically as a list of tuples (meeting, keyword, doc type, URL), where the URLs
are used as unique identifiers of the documents. The DI uses a state-of-the-
art system, Apache Lucene in its Perl implementation called Plucene, using all
words as keywords and building an optimized index using word stemmers and
the TF*IDF weighing scheme.

In the present implementation, the index is accessed directly by the Query
Aggregator as a set of files in native Plucene format. However, as the index is a
permanent layer of information concerning the documents related to a meeting, it
could be stored in a declarative format in the Hub’s main database, from where
it could be retrieved at the beginning of the demo by the Query Aggregator,
which is constantly using it.

3.4 Query Aggregator

The Query Aggregator periodically extracts from the speech of a given meeting a
list of keywords that are mentioned, using the ASR, or even a manual transcript
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for the offline scenario or for development purposes. The QA gets the words via
the Hub and processes them in batches corresponding to time frames of fixed size,
currently every 30 seconds. This size is a compromise between the need to gather
enough words for search, and the need to refresh the search results reasonably
often. Instead of the fixed time frame, information about audio segmentation
into spurts or utterances could be used for a more natural segmentation of the
ASR input.

The QA uses the words to build a query string for the Apache Plucene engine,
which searches the index to retrieve relevant documents. These documents are
sent as new Linked Content annotations to the Hub, from where they can be
used by the UI to display the document labels and give access to them via their
URLs. This task has thus a similar goal as speech/document alignment [7,12],
except that alignment is viewed here as the construction of sets of relevant
documents for each meeting segment, and not only as finding the document
that the segment “is about”. The retrieval techniques that are employed are
therefore quite different too, as speech/document alignment relies on precise
matching between a referring expression and one of the elements of a document.

An offline version of the QA generates static XML and HTML views for com-
pleted meetings, which are used for debugging and for evaluation. The HTML
view shown in Figure 3 displays on the left the ASR for the current meeting
segment tn, and on the right up to six most relevant documents (using their
HTML version) with their relevance scores. The keywords are highlighted in
red, both within the meeting transcript and in the documents. The words from
the transcript are highlighted in blue, but only in the documents where they are

Fig. 3. HTML view of the offline output of the Query Aggregator – only the best
document is shown (bottom right). Keywords are highlighted both in the transcript
(left) and in the documents (right): e.g., ‘energy’, ‘chip’ or ‘latex’. Words from the
transcript that appear in the retrieved documents are highlighted only in the documents
(right): e.g., ‘kinetic’ or ‘battery’.
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found – otherwise the entire meeting segment would be highlighted in blue, which
is not very informative. The upper frame of the interface in Figure 3 allows the
user to select a segment of the current meeting based on its timing in seconds.

Role of Pre-specified Keywords. Existing knowledge about the important
terminology of a project can be used to increase the impact of specific words on
search. A list of pre-specified keywords can be defined, and in case any of them
is detected in the audio input from the meeting, their importance is increased
when doing the search, using Plucene’s boosting mechanism. The weight of the
keyword boosting is currently set at five times the weight of non-boosted words.
A specific list was defined by the user-study group for the meetings under study,
and at present it contains words or expressions such as ‘cost’, ‘energy’, ‘com-
ponent’, ‘case’, ‘chip’, ‘interface’, ‘button’, ‘L C D’, ‘material’, ‘latex’, ‘wood’,
‘titanium’, and so on, for a total of about 30 words. However, the QA works also
without a list of boosted terms.

In addition, the words from the ASR or transcript are filtered for stopwords,
so that mostly content words are used for search. Our list has about 80 words,
including the most common function words, interjections and discourse markers.

The QA performs document search by matching the query words from the
ASR with those from the index constructed by the DI and returns the most
relevant set of documents for the respective time frame, more specifically a list of
tuples such as (meeting, time, keyword, relevance, doc type, pointer). It is useful
to include in this annotation the keywords that were matched (i.e. the ones that
helped to retrieve the specific document) as well as a relevance score produced
by the search engine, to allow the interface to sort the relevant documents as
needed. This annotation, of the Linked Content type, is sent to the Hub (and
also stored in the Hub’s database), from where it is retrieved by consumers that
have subscribed to Linked Content, such as the user interface.

Persistence and Filtering Mechanisms. To avoid inconsistent results from
one time frame to another, due to the fact that word choice varies considerably
in such small samples, and therefore search results vary as well, a persistence
(smoothing) mechanism was defined. This mechanism was partly inspired by
the notion of perceptual salience of entities, used for reference resolution, and
more specifically from techniques that were implemented to compute salience in
texts or in multimodal settings [7,13,14]. In the present case, the relevance of
the documents amounts to a form of conceptual salience that evolves in time.

The persistence mechanism adjusts the current relevance scores for each doc-
ument returned by the search engine, considering also the documents from the
previous time frame and their own adjusted relevance scores. If tn denotes the
current time frame and tn−1 the previous one, and if r(tn, dk) is the raw rele-
vance of document dk computed by the search engine after a query at time tn,
then the adjusted relevance r′(tn, dk) computed using the persistence (smooth-
ing) mechanism, is r′(tn, dk) = r(tn, dk)+α∗r′(tn−1, dk), where α is a smoothing
factor. Roughly, a larger value of α denotes a larger persistence – but α should be
set below 1, because if α > 1 then r(tn)) keeps increasing even if the document is
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no longer retrieved. In our experiments, a typical value of α = 0.8 was used. The
intuition behind the choice of this formula (as opposed to a more traditional
r′n = α ∗ rn + (1 − α) ∗ r′n−1) is a correction of the relevance score returned by
the search engine, possibly increasing it if the document was already present,
but without multiplying it from the start by an α factor.

Additionally, a filtering mechanism deletes the least relevant of the documents
sent to the UI, returning at most N documents (currently N = 6), or fewer,
depending on the following constraints. Given the list of all documents that were
retrieved, sorted by decreasing relevance, the QA sends to the UI the documents
that have an adjusted relevance above a certain threshold (currently 0.2), and
the list of results is truncated where relevance decreases sharply, typically when
r′(tn, dk+1) ≤ 0.5 ∗ r′(tn, dk).

4 Implementation

The first version of the AMIDA Automatic Content Linking Device is now opera-
tional, and a second version is in preparation at the time of writing. Both the UI
and the QA are implemented using two components: a Java front-end ensuring
communication with the Hub – as a consumer for the UI or as a producer and
consumer for the QA – and a separate piece of code in a different programming
language – Flash for the UI and Perl for the QA.

The ACLD runs on a single Windows PC or over a network, and other opera-
ting systems will be considered in the future. The main software prerequisite is
the Hub itself, which requires a MySQL database with one table for timed triples.
To run the QA, Perl and the Plucene search and indexing modules are required.
Compilation of all source files is centrally managed by a build.xml file in the
top level directory of the repository, which requires the Apache Ant build tool.
A number of variables can be set by modifying the initial lines of build.xml.
The same build.xml file also executes the following groups of actions required
to start the ACLD on meeting ES2008d, once all source code is compiled:

1. Start the Hub and roll back its database to the state that holds after meetings
ES2008a-c and before ES2008d.

2. Start the QA and the UI, which subscribe to the Hub.
3. Stream the words obtained by the ASR for ES2008d to the Hub.

As both the QA and UI “listen” to the Hub, the words are sent to the QA,
which sends back Content Linking data, which is used by the UI to display the
results.

5 Evaluation

The execution tests of the first prototype have been satisfactory: the communi-
cation between the modules using the Hub works smoothly, and the logs show
that modules connect properly, and that annotation triples are correctly sent
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and received. The documents that are retrieved contain the expected words
and keywords, as we carefully checked using the static HTML representation
of Linked Content produced by the QA (Figure 3). The functionalities offered
by the UI over these documents are available as described in Section 3.1. The
nature of Perl scripting makes it easy to change many of the parameters of the
QA, even while the system is running, which allows experimenting with various
values of the persistence and filtering model, and with various lists of keywords
and stopwords.

The performance evaluation of the ACLD is the topic of future work. One
can test the performance of the retrieval system in terms of precision and re-
call, but this requires the definition of a ground truth document set for each
time interval of a meeting, which is the main difficulty for such an evaluation.
Three approaches to the ACLD evaluation problem are planned: (1) construct
ground truth data using human annotators who associate documents to meeting
segments; (2) evaluate the ACLD by judging the relevance of each document it
returns; and (3) test the ACLD in use on the participants to an ongoing meeting,
by measuring how often they consult the proposed documents.

The ACLD was demonstrated to potential industrial partners, namely about
thirty representatives of companies that are active in the field of meeting tech-
nology. A series of sessions, lasting 30 minutes each, started with a presentation
of the ACLD and continued with a discussion, during which notes were taken
by the first author. The participants found that both online and offline appli-
cation scenarios are promising, as well as both individual and group uses. The
ACLD received very positive verbal evaluation, as well as useful feedback and
suggestions for future work.

6 Future Work

The first implementation of the ACLD served as a demonstration or proof-of-
concept, and enabled the authors to collect feedback indicating the most impor-
tant developments that are required to turn it into a real-world application.

The graphical layout of the interface will be improved by allowing a
larger part of the screen to be used for displaying the documents, using larger
overviews of each document, and discarding past documents more quickly. This
would also help to reduce the number of mouse clicks required to access the
content of documents. Color-coding the document types and displaying their
relations to the words from the ASR would also improve user experience.

Another line of suggestions concerns the document repository, which can
be extended in various ways. The repository could include documents from larger
sets, which are not entirely known to users, so that the interface brings new knowl-
edge into a meeting. These sets could be private, personalized and better struc-
tured. A significant extension would be the connection to a Web search engine,
which could be limited to a sub-domain to avoid potential noise in the results.

A number of additional functionalities were suggested. For instance, keep-
ing a record of the documents that were consulted during a meeting might help
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users who want to go back to them after the meeting. Detecting similarities
with previous discussions would help alerting users that they already had this
discussion before. Retrieval could be improved by including a relevance feedback
mechanism for the returned documents, by representing keywords in a struc-
tured manner, e.g. using tag clouds, and by using word sense disambiguation to
improve the precision of the retrieval.

Finally, the ACLD could be part of a broader-scope meeting assistant,
which would not only help local participants with their documents, but would
also improve the engagement of remote participants that attend a meeting using
a mobile device [15]. In this case, document sharing would be one of the factors
that improve the participants’ engagement in a meeting.
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Abstract. Statistical Machine Translation (SMT) has been receiving a
very great amount of attention in recent years. However, translations
provided by SMT systems are still far from being perfect. This fact leads
to the necessity of including a human expert in the translation process
to assure high quality translations. Among the possible ways to incorpo-
rate human knowledge in a translation process, we adopt the Interactive-
Predictive (IP) framework. In this framework, we show how the mouse
actions that the expert performs offer information to the IP system, and
can be used to automatically improve the translation even before the
user introduces a correction. In addition, we present an improved user
interface, which introduces mouse actions as a novel, additional, input
information source for the underlying SMT engine.

Keywords: Interactive MT, Computer Assisted Translation.

1 Introduction

Machine Translation (MT) is a research field that has been receiving a great
amount of attention during the last years, both in official institutions such as
the European Parliament and the United Nations, and in private environments
such as to translate user manuals or correspondence. Hence, a breakthrough in
this area would have an important socio-economic impact.

Classical MT systems require an important human effort [1], whereas Statis-
tical Machine Translation (SMT) has proved to be an efficient framework for
building MT systems automatically with little or no human effort, whenever
suitable parallel corpora are available.

The statistical approach to the MT problem was described by [2] as follows:
given an input sentence x from a certain source language, an adequate sentence
ŷ that maximises the posterior probability is to be found. Such a statement can
be specified with the following equation:

ŷ = argmax
y

Pr(y|x) (1)

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 284–295, 2008.
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Applying Bayes’ theorem on this definition, one can easily reach the next
equation

ŷ = argmax
y

Pr(x,y)
Pr(x)

= argmax
y

Pr(x,y) (2)

where the denominator has been neglected because it has no effect when max-
imising over y.

In this paper, we consider the joint probability Pr(x,y), instead of the widely
used decomposition Pr(y) · Pr(x|y), because we model the translation process
according to the stochastic finite-state framework described in [3], following pre-
vious work on Interactive Machine Translation (IMT) [4] and for comparison
purposes in this work.

Nevertheless, current MT systems are far from perfect. Because of this fact,
those who are in need of such software often have to choose between the (po-
tentially flawed) translation provided by a MT system and the use of Computer
Assisted Translation (CAT) [5] software. In the first case, the user must correct
the errors produced by the MT system in a post-editing step. In the second
case, the user cannot take advantage, or only partially, of the potential of MT
systems.

After such arguments, it seems only obvious that SMT systems should be
merged into CAT systems, in order to obtain flawless translations while reduc-
ing significantly the effort performed by the human translator. This is the idea
behind the IMT [4] paradigm, in which the human translator is integrated into
the translation process, in the spirit of merging both the efficiency of SMT sys-
tems and the correctness of human translators, achieving an effective interaction
between both actors. The IMT paradigm fits well within the Interactive Pattern
Recognition framework introduced in [6].

Within the IMT paradigm, the user is given an input sentence x and a can-
didate translation y, obtained via an implementation of Equation 2. Then, the
user validates a prefix p of y as correct by positioning the cursor in a certain
position of y. Note that it may also be an empty prefix, in case the first word
of the sentence is not appropriate. Implicitly, he is also marking the rest of the
sentence, the suffix sl, as potentially incorrect. Next, he introduces a new word
k, which is assumed to be different from the first word sl1 in the suffix sl which
was not validated, k 
= sl1 . This being done, the system suggests a new suffix
hypothesis ŝh, subject to ŝh1 = k. Again, the user validates a new prefix, intro-
duces a new word and so forth. The process continues until the whole sentence
is correct.

This process is illustrated in Figure 1. In this example, the interactive-
predictive process starts by the system first suggesting a translation in which
the word order is not the one preferred by the user. Hence, the user validates
the prefix “To print a”, introduces the word “list”, and the system suggests
the correct suffix. Finally, the user validates the whole sentence and marks the
sentence as correct by introducing the special character “#”. The system then
retains as final prefix the whole translation. In this case, the user just needed
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SOURCE (x): Para imprimir una lista de fuentes postscript:
REFERENCE (y): To print a list of postscript fonts:

ITER-0
(p) ( )
(ŝh) (To print a postscript font list:)

ITER-1

(p) (To print a)
(sl) (postscript font list:)
(k) (list)
(ŝh) (of postscript fonts:)

ITER-2

(p) (To print a list of postscript fonts:)
(sl) ()
(k) (#)
(ŝh) ()

FINAL (p ≡ y) (To print a list of postscript fonts:)

Fig. 1. Example of typical interactions in the IMT paradigm, for translating a Spanish
sentence into English

to interact once, whereas in a post-editing scenario he would have needed to
interact perhaps four times.

The above ideas can be formalised as follows [7]:

ŝh = argmax
sh

Pr(sh|x,p, k) (3)

Following the same process that led us from 1 to 2:

ŝh = argmax
sh

Pr(x,p, k, sh) (4)

being more appropriate for an SMT system based on stochastic finite-state trans-
ducers (SFST).

When observing Equations 2 and 4, the difference between them can be seen
as a search problem, in which we need to constrain the search space to only
consider those translation hypotheses which contain a prefix p and suffix sh

that begins with word k provided by the user.
Since the problem of finding ŝh is most probably NP-hard because of its sim-

ilarity to other problems described as such in [8], we will approximate ŝh using
the Viterbi algorithm as done in [4]. To decrease the computational cost of the
search for the optimal suffix ŝh in Equation 4, a word graph with translations of x
available in the SFST (a pruned Viterbi trellis) is generated in the first iteration.

Now, the search for the optimal ŝh in each iteration is carried out on the
above described word graph, instead of performing a conventional search with
the stochastic finite-state transducer.

2 Mouse Actions as Additional Information Provided by
the User

Until now, however, the only interface between the underlying SMT engine and
the user was the keyboard, i.e. when the user introduced or corrected a word, the
system provided a new translation hypothesis composed by the prefix validated
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SOURCE (x): Para imprimir una lista de fuentes postscript:
REFERENCE (y): To print a list of postscript fonts:

ITER-0
(p) ( )
(ŝh) (To print a postscript font list:)

ITER-1
(p) (To print a)
(sl) (postscript font list:)
(ŝh) (list of postscript fonts:)

ITER-2

(p) (To print a list of postscript fonts:)
(sl) ()
(k) (#)
(ŝh) ()

FINAL (p ≡ y) (To print a list of postscript fonts:)

Fig. 2. Example of non-explicit MA which solves an error of a missing word. In this
case, the system produces the correct suffix sh immediately after the user validates a
prefix p, implicitly indicating that we wants the suffix to be changed, without need of
any further action.

by the user, the new word introduced, and a suffix suggested by the translation
engine. Hence, the only utility of Mouse Actions (MA) was to position the cursor
in the appropriate place before typing in a word.

In this work, we present the MAs as a new input interface between the user
and the SMT engine. In this context, we will be considering two types of MA:

1. Non-explicit MA: Whenever the user wants to correct the translation hy-
pothesis, he needs to first click on the position he intends to correct, in
order to place the cursor in the appropriate position. By doing so, the user
is already providing some useful information: he is validating a prefix up
to the position where he has set the cursor, and, moreover, he is indicating
that whatever comes after that cursor position is incorrect and he wants it
to be replaced. Hence, at this point the system can already provide a new
translation hypothesis, in which the first word of the suffix must be different
to the first word of the previous suffix. Of course, this does not ensure that
the new suffix provided will be the one the user has in mind. However, given
that we have the certainty that the previous suffix was incorrect, the worst
thing we can do by changing it is that it remains incorrect. We are naming
this kind of MA non-explicit because it does not require an additional action
from the user: the user is performing a MA to position the cursor, which is
taken advantage of by the system to suggest another (potentially correct)
suffix. Hence, we only consider as non-explicit MA the one that implies a
change in cursor position, i.e. if the cursor is already in the correct position
(e.g. after correcting the previous word), the user does not perform a MA,
and the suffix remains unchanged. Figure 2 illustrates an example in which
a non-explicit MA is enough to correct the error described in Figure 1. In
this example, when the user is positioning the cursor after “To print a”,
the system already knows that, in this case, the word “postscript” should
not be placed after word “a”, and suggests a new suffix, which happens to
be correct. Hence, the user does not need to introduce the word “list”, as
was the case in Figure 1, and just needs to validate the whole sentence and
proceed to next sentence.
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SOURCE (x): Seleccione el tipo de instalación.
REFERENCE (y): Select the type of installation.

ITER-0
(p) ( )
(ŝh) (Select the installation wizard.)

ITER-1
(p) (Select the)
(sl) (installation wizard.)
(ŝh) (install script.)

ITER-2
(p) (Select the)
(k) (type)
(ŝh) (installation wizard.)

ITER-3
(p) (Select the type)
(sl) (installation wizard.)
(ŝh) (of installation.)

FINAL (p ≡ y) (Select the type of installation.)

Fig. 3. Example of explicit MA which solves an error of an erroneous suffix. In this
case, after a non-explicit MA is performed ITER-1, with no success. Then, the user in-
troduces word “type” in ITER-2, which leaves the cursor position located immediately
after word “type”. Hence the user would not need to perform a MA to re-position the
cursor and continue typing in order to further correct the remaining errors. However,
since he has learned the potential benefit of MAs, he performs an explicit MA, after
which the system changes the suffix and corrects the error.

2. Explicit MA: If the system is efficient, and provides suggestions which are
good enough, another scenario one could easily picture is the one in which the
user would like the suffix to be changed, ignoring where the cursor position
is located. Hence, the user would always click before an incorrect word, the
cursor position being irrelevant. We are naming this kind of MA explicit,
because it is not completely transparent to the user: it requires additional
actions than those he would normally perform. However, if the MT engine
providing the suffixes is good enough, the user could quickly realise that
performing a MA is less costly than introducing a whole new word, and would
take advantage of this fact by systematically clicking before introducing a
word. An example of such a MA is illustrated in Figure 3.

At this point, we would like to emphasise that improvements in performance
achieved with explicit MAs may be arguable, since they imply a trade-off between
MAs and key strokes. On the other hand, improvements obtained with non-
explicit MAs constitute improvements per se, since they do not require any
additional action from the user.

3 Mouse Actions as a Constrained Search Problem

Now, we are considering two possible situations. The first one, in which a user
validates a prefix p by positioning the cursor before the first wrong word in the
hypothesis generated by the system. In this situation, the equation that describes
the search that has to be performed evolves to

ŝh = argmax
sh:sh1 �=sl1

Pr(x,p, sh|sl) (5)
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where sl is the suffix generated in the previous iteration, already discarded by
the user, and sl1 is the first word in sl.

If such a search is successful and returns a suffix that satisfies the user, at
least in its first word, then the user validates a new prefix, and a new search
with the same form of Equation 5 takes place.

However, if the user does not like the new suffix provided and decides to type
in a new word, we have a different situation, which is the same one as described
in Equation 4.

The main difference between the situations described in Equations 4 and 5 is
that, in the second case, the user does not type in any new word whatsoever.

4 Experimental Setup

4.1 System Evaluation

System evaluation is a difficult issue in MT. In contrast with other fields of
Natural Language Processing such as speech recognition and text recognition,
in MT there is no unique ground truth, i.e. given a system input x, the system
could produce several correct and different outputs. This implies a huge difficulty
when evaluating automatically whether a translation produced by a given system
is correct. This problem has given rise to its own research field, where several
automatic evaluation metrics have been proposed. By extension, this problem is
also applicable to IMT.

In this paper, we will be reporting results measured in Word Stroke Ratio
(WSR) [4], which is a ratio between the number of word-strokes a user would
need in order to achieve the reference translation and the total number of words
in the reference.

However, given that in this paper we are also introducing MAs as a user
action, we will also present a Mouse Action Ratio (MAR), which, analogously
to WSR, is a ratio between the number of MAs required by the user to achieve
the final reference sentence and its total number of words.

It must be noted, however, that these measures are, because of their nature,
pessimistic, since they are only taking into account one single possible ground
truth translation. One could easily picture a situation in which the system would
produce a perfectly acceptable translation, which would happen to be different
to the sentence considered ground truth. This would imply that a (possibly) high
WSR measure would be returned, whereas the translation would not “deserve”
this evaluation.

4.2 Corpora

Part of the experiments reported here were carried out on the Xerox corpora [9],
which is a compendium of user manuals for Xerox printers and photocopiers.
English being the source language, the reference translations in Spanish, French
and German were provided by Xerox’s language services. The corpora were di-
vided into two subcorpora, one for training the transducers and one reserved for
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Table 1. Characteristics of the Xerox corpora. “K” means that the numbers are given
in thousands, and “OOVs” stands for “Out Of Vocabulary” words.

Es–En Fr–En De–En
Spanish English French English German English

Training

Sentences (K) 55 52 49
Avg. length 13 11 13 11 10 11
Vocabulary (K) 11 7 9 7 19 7
Singletons (K) 3 1 2 1 7 1
Run. words (K) 752 665 686 632 534 587

Test

Sentences 1000 1000 1000
Avg. length 8 7 12 11 11 12
OOVs 69 49 118 82 426 81
Run. words (K) 10 8 11 11 11 12
Perplexity 32.9 47.0 50.4 69.1 85.9 49.2

Table 2. Characteristics of the EU corpora. “K” means that the numbers are given in
thousands, and “OOVs” stands for “Out Of Vocabulary” words.

Es–En Fr–En De–En
Spanish English French English German English

Training

Sentences (K) 214 215 222
Avg. length 27 24 27 24 24 25
Vocabulary (K) 97 83 91 83 152 86
Singletons (K) 42 37 39 37 74 38
Run. words (K) 5845 5203 5806 5283 5348 5698

Test

Sentences 800 800 800
Avg. length 28 25 28 25 23 25
OOVs 82 58 64 60 182 58
Run. words (K) 22 19 21 19 18 19
Perplexity 45.8 57.7 45.2 57.8 86.9 56.7

the automatic evaluation of the IMT systems built. The characteristics of these
corpora can be seen in Table 1.

The other corpus used for this paper is the EU corpus, built of the Bul-
letin of the European Union, which exists in all official languages of the Eu-
ropean Union [10] and is publicly available on the internet. In this case, we
also performed our experiments on the French↔English, German↔English and
Spanish↔English subcorpora. In this case, as well, the corpora were subdivided
into training and evaluation sets. The characteristics of these corpora can be
seen in Table 2.

4.3 Experimental Results

The results of both non-explicit and explicit MA types can be seen in Tables 3
and 4. In these tables, the baseline system presents the same MAR as when
introducing non-explicit MAs precisely because of the definition of non-explicit
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Table 3. Experimental results with the Xerox corpus, when considering both non-
explicit and explicit Mouse Actions. The last column is given in terms of WSR relative
improvement with respect to the baseline. All results are in percentage.

baseline non-explicit explicit
MAR WSR MAR WSR WSR red. MAR WSR WSR red.

En–Es 10.0 27.4 10.0 24.3 11.3 27.1 21.6 21.2
Es–En 13.5 31.7 13.5 27.0 14.8 31.3 23.8 24.9
En–De 12.6 65.1 12.6 63.2 2.9 65.0 59.2 9.1
De–En 13.5 58.5 13.5 56.2 3.9 58.4 51.9 11.3
En–Fr 13.6 55.4 13.6 52.1 6.0 54.9 48.3 12.8
Fr–En 15.7 55.0 15.7 51.5 6.4 54.6 47.1 14.4

Table 4. Experimental results with the EU corpus, when considering both non-explicit
and explicit Mouse Actions. The last column in given in terms of WSR relative im-
provement with respect to the baseline. All results are in percentage.

baseline non-explicit explicit
MAR WSR MAR WSR WSR red. MAR WSR WSR red.

En–Es 15.9 52.1 15.9 49.0 6.0 52.3 44.9 13.8
Es–En 13.8 48.5 13.8 45.5 6.2 48.2 40.8 15.9
En–De 23.5 62.2 13.5 60.6 2.6 62.3 56.4 9.3
De–En 14.4 60.5 14.4 58.5 3.3 60.5 53.4 11.7
En–Fr 15.6 49.6 15.6 47.0 5.2 49.8 43.1 13.1
Fr–En 14.4 44.0 14.4 40.3 8.4 43.8 36.3 17.5

MA: the baseline MAs are those the user needs to perform in order to position
the cursor before introducing a new word, and are the same as those taken into
account when considering non-explicit MAs. It can be seen that, throughout all
the language pairs and for both corpora, considering non-explicit MAs, which do
not require any additional action from the user, obtains a relative improvement
of at least 2.9%, ranging up to a very significant relative improvement of 14.8%.
In addition, considering explicit MAs further improves the baseline system, and
even the system obtained when considering only non-explicit MAs. Although in
this case it does require additional actions from the user, and the MAR increases
significantly as well, we have the conviction that a MA is less costly for the user
than typing in a word.

Moreover, it must be noted that, according to these results, it seems that the
lower the baseline WSR, the higher the relative improvement when introducing
both non-explicit and explicit MAs. This is due to the fact that a higher baseline
points towards a better translation model, which will, in turn, be able to provide
a more useful suffix hypotheses when asking it to return a new ŝh such that
sh1 
= sl1 . If the translation model is not complex enough, it will most probably
return an empty suffix, since the only suffix hypothesis which it is able provide
is the one the user already discarded. This (inverse) relation is illustrated in
Figure 4.
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Fig. 4. Plot evidencing the inverse relation between baseline WSR and WSR relative
improvement when considering both non-explicit and explicit MAs

5 Development of a User Interface

As the main aim of an IMT system is its final utilisation by a user, we developed
a user interface for our system. The great advantage of having such an interface
is that users can test how it works, providing useful feedback about its practical
functionality. Having somebody use the interface allowed us to see that considering
MAs as additional input information is a very intuitive improvement for the user.

An important point about this interface is how the user interacts with the
system. In this section we will explain how this interaction is carried out.

Firstly, the user selects a source sentence to translate (x). At real time speed,
the system returns a suggestion for this translation. In that moment, the user can
accept (with a MA) the complete sentence, or he can position the cursor before
the word which is regarded as incorrect. In this latter case, the system returns
automatically another suffix suggestion subject to the constraint described in
Equation 5. Hence, the user might not need to introduce the next word. If a new
error appears at the same place or the user does not like the new suggestion, he
can simply type in the word he has in mind without further ado. This being
done and the error being corrected, the process is repeated again until we have
obtained a correct translation.

For example, let the source sentence be “Select the print line that you want to
use”, which has as reference translation “Seleccione la ĺınea que desea usar”. At
the beginning, the system will return the suffix hypothesis “Seleccione el ĺınea
que desea usar”. The user accepts “Seleccione” and the system returns the new
suffix hypothesis “la ĺınea que desea usar”. Then, the user accepts the suggestion
and the translation process is finished.
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Fig. 5. User interface window of the IMT system built. The upper frame displays the
list of processed sentences. The middle frame presents the sentence being currently
worked on, where the current source sentence and its corresponding translation, which
is currently being built, are shown. Note that suggestions are differently coloured, in
order to distinguish them better. Finally, the lower frame lists the sentences that are
yet to be translated.

6 Conclusions and Future Work

In this paper we have considered new input sources for IMT systems. By in-
troducing Mouse Actions as a new information source for the IMT system, we
have shown that we can significantly improve the performance of the human
translator, as measured by WSR, when dealing with such a system. Although
the results show important improvements, they highly depend on how suitable
the SMT model on which the IMT system relies is.

A lot of future work remains to be done. First, we would like to extend these
results to the character level, i.e. that the user may click on the middle of a
word and signal in such a way that only part of the word is correct. By doing
so, we would be able to reduce the human effort even further, and, moreover, we
would be able to measure the effort of the human translator more accurately, by
computing the amount of key-strokes he needs to type, instead of word-strokes.
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Furthermore, we also intend to exchange the underlying SMT model by a
state-of-the-art phrase-based model. To achieve this, we first need to obtain a
word graph from the phrase-based decoding process.

In addition, we also plan on investigating the effect on WSR of several consec-
utive MAs on the same spot, i.e. allowing the user to click several times before
a given translation error so that several hypotheses cycle before he needs to
introduce a word.

And finally, we also plan to perform a human evaluation that verifies the
goodness of the improvements pointed by the WSR measure.

The work reported on this paper is closely related to the work reported by [11],
in which similar ideas to those reported here were applied to Computer Assisted
Text Recognition, yielding satisfactory results as well.
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Abstract. Current automatic handwriting text image recognition sys-
tems are far from being perfect and, in general, human intervention is
required to check and correct the results of such systems. This is both
inefficient and uncomfortable to the user. As an alternative to this post-
editing process, a multimodal interactive approach is proposed, where
user feedback is provided by means of touch-screen pen strokes and/or
more traditional keyboard and mouse operation. Experiments suggest
that, using this approach, significant amounts of user effort can be saved
with respect to the conventional, non-interactive, post-editing process.

1 Introduction

Lately, the paradigm for Pattern Recognition (PR) systems design has been
shifting from the concept of full-automation to systems where the decision pro-
cess is conditioned by human feedback [1]. A task where this paradigm shift
particularly applies is the transcription of handwritten text images.

State-of-the-art handwritten text recognition systems (HTR) can not suppress
the need of human work when high quality transcriptions are needed. HTR
systems can achieve fairly high accuracy for restricted applications with rather
limited vocabulary and/or form-constrained handwriting [2,3]. However, in the
case of unrestricted text, current HTR technology typically fails to achieve results
which are directly acceptable in practice. Therefore, once the full recognition
process of one document has finished, heavy human expert revision is required
to really produce a transcription of standard quality. Such a post-editing solution
is rather inefficient and uncomfortable for the human corrector.

An interactive scenario allows for a more effective approach. Here, the auto-
matic HTR system and the human transcriber cooperate to generate the final
transcription, thereby combining the accuracy provided by the human opera-
tor with the efficiency of the HTR system. We call this approach “Computer
Assisted Transcription of Text Images” (CATTI) [4,5].
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In our previous works, human feedback for CATTI has been assumed to come
in the form of keyboard and mouse actions. Nevertheless, at the expense of
loosing the deterministic accuracy of this traditional input modality, more er-
gonomic multimodal interfaces are possible. It is worth noting, however, that this
increased ergonomy comes at the cost of new errors expected from the decoding
of the feedback signals. Therefore, solving the multimodal interaction problem
requires adequate techniques to achieve a modality synergy where both main
and feedback data streams help each-other to optimize overall accuracy. These
ideas have recently explored in the context of computer assisted translation,
where speech signals are used for feedback [1]. Among many possible feedback
modalities, we focus here on touch-screen operation, which is perhaps the most
natural feedback modality for CATTI. This way, the user corrective feedback
can be quite naturally provided by means of on-line text or pen strokes which
are exactly registered over the text produced by the system (see fig. 2).

We will employ the words “HTR system” (or just HTR) to mean the off-
line HTR system which processes the main text images, whereas “handwritten
feedback recognition subsystem” (or just HFR) will be employed for the on-line
HTR system used in multimodal correction. In the present work, both HTR
and HFR are based on Hidden Markov Models (HMMs) [6], in a similar way as
HMMs are currently used in Automatic Speech Recognition [7].

In this paper we briefly review the CATTI framework (section 2) and formally
introduce the multimodal version of this framework discussed above (section 3).
After an overview of the HTR and HFR systems used (section 4), experiments
are presented (section 5) to assess the capabilities of the proposed techniques
using a well-known and publicly available corpus of off-line handwritten text
images (IAMDB [8]) and another public corpus of on-line handwritten text
(UNIPEN [9]) to simulate the user feedback touchscreen data.

2 Review of the CATTI Framework

In the CATTI framework, the user is directly involved in the transcription pro-
cess since he/she is responsible of validating and/or correcting the HTR output.
The process starts when the system predicts an initial whole transcription of
(some adequate segment of) the input image. Then, the user reads this pre-
diction until finding (and correcting) an error. This generates a new, extended
prefix (the previous validated prefix, plus the user amendments), which is used
by the HTR system to attempt a new prediction hypothesis, thereby starting a
new cycle that is repeated until a final correct transcription is achieved.

Formally, CATTI fits within the Interactive Pattern Recognition (IPR)
paradigm proposed in [1], in which a best system hypothesis is expressed as:

ĥ = argmax
h

Pr(h | x, f) (1)

where x is the input signal or data and f stands for the feedback, user-interaction
derived informations.
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In CATTI, in addition to the given input (image) x, a user-validated prefix p
of the transcription is available, which corresponds to the feedback f in eq. (1)).
It contains information from the previous system’s prediction, plus user’s actions
in the form of amendment keystrokes. The HTR system should try to complete
this prefix by searching for the most likely suffix ŝ (ĥ in eq. (1)), according to:

ŝ = argmax
s

Pr(s | x, p) = arg max
s

Pr(x | p, s) · Pr(s | p) (2)

Therefore, the search must be performed over all possible suffixes s of p and
the language model probability Pr(s | p) must account for the words that can
be written after the prefix p. As discussed in [4], the image x ≡ xm

1 can be
considered split into two fragments, xb

1 and xm
b+1 and (2) can be rewritten as:

ŝ ≈ argmax
s

max
0≤b≤m

Pr(xb
1 | p) · Pr(xm

b+1 | s) · Pr(s | p) (3)

This optimization problem entails finding an optimal boundary point, b̂, associ-
ated with the optimal suffix decoding, ŝ. Therefore, the search can be performed
just over segments of the image corresponding to the possible suffixes and, on
the other hand, we can take advantage of the information coming from the prefix
to implement the language model constraints involved in Pr(s | p).

The probabilities Pr(xb
1 | p) and Pr(xm

b+1 | s) are modelled by HMM morpho-
logical words models [4,6,10] whereas, for Pr(s | p), an n-gram model conditioned
by the prefix p is needed. In what follows, modelled probabilities will be written
as P (), while Pr() is reserved for true probabilities. As discussed in [4], the con-
ventional n-gram language model estimated for (non-interactive) off-line HTR is
adapted to cope with the prefix p in Pr(s | p):

Pr(s | p) �
n−1∏
j=1

P (sj | pk
k−n+1+j , s

j−1
1 ) ·

l∏
j=n

P (sj | sj−1
j−n+1) (4)

where p = pk
1 is a consolidated prefix and s = sl

1 is a possible suffix. The first
term of (4) accounts for the probability of the n−1 words of the suffix whose
probability is conditioned by words from the validated prefix, while the second
term is the usual n-gram probability for the rest of the words in the suffix.

As in [4], we can explicitly rely on eq. (3) to implement a decoding process
in one step, as in conventional HTR systems. The decoder should be forced to
match the previously validated prefix p and then continue searching for a suffix
ŝ according to the constraints (4). This can be achieved by building a special
language model which can be seen as the “concatenation” of a linear model
which strictly accounts for the successive words in p and a “suffix language
model” as in (4). This is illustrated in figure 1. Owing to the finite-state nature
of this special language model, the search involved in eq. (3) can be efficiently
carried out using the well known Viterbi algorithm [10].
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Training samples
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de edad media
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Fig. 1. Example of CATTI dynamic language model building. First, a bigram for the
training set of the figure is obtained. Then, a linear model which accounts for the
prefix “en la” is constructed. Finally, these two models are combined into a single
prefix-constrained model.

3 Multimodal Computer Assisted Transcription of
Handwritten Text Images (MM-CATTI)

As discussed in Section 2, traditional peripherals like keyboard and mouse can be
used to unambiguously provide the user feedback required for the validation and
correction of the successive system predictions. Nevertheless, providing the sys-
tem with more ergonomic multimodal interfaces should result in an easier and
more comfortable human-machine interaction, at the expense of the feedback
being less deterministic to the system. Here we will focus on touchscreen com-
munication, which is perhaps the most natural modality to provide the required
feedback in CATTI systems.

The proposed multimodal interaction process is formulated in two steps. Let
x be the input text image and p a user-validated prefix of the transcription.
In the first step a CATTI system solves the problem (2), yielding an optimal
continuation (or suffix) ŝ of p. In the second step, the user enters some (may
be null) on-line touchscreen pen-strokes, t, to correct the first error in ŝ and an
on-line HTR feedback subsystem (or HFR) is used to decode t into a word (or
word sequence), d̂:

d̂ = arg max
d

Pr(d | x, p, ŝ, t) (5)

Finally, the user can enter additional amendment keystrokes κ, if necessary, and
produce a new consolidated prefix, p, based on the previous p, d̂, κ and parts of
ŝ. The process continues in this way until p is completely accepted by the user
as a full correct transcription of x.
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x

STEP-0 p

ŝ ≡ ŵ opposite       this       Comment           Bill     in that      thought
p′, t opposite       this       Comment           Bill     in that      thought

STEP-1 d̂ opposed       this       Comment           Bill     in that      thought
κ

p opposed       this       Comment           Bill     in that      thought
ŝ opposed     the       Government       Bill     in that      thought

p′, t opposed       the       Government       Bill   in that      thought
STEP-2 d̂ opposed       the       Government       Bill whack thought

κ opposed       the       Government       Bill which thought
p opposed       the       Government       Bill     which      brought
ŝ opposed       the       Government       Bill     which    brought

p′, t opposed       the       Government       Bill     which    brought
FINAL κ opposed       the       Government        Bill     which      brought  # 

p ≡ T opposed        the       Government       Bill which    brought

Fig. 2. Example of typewriter and on-line touchscreen interaction with a MM-CATTI
system, to transcribe an image of the text segment: “opposed the Government Bill
which brought”. Each interaction step starts with a transcription prefix p that has been
fixed in the previous step. First, the system suggests a suffix, ŝ, from which the user
defines a longer correct prefix, p′, and handwrites some touchscreen data, t, to correct
the first error in ŝ. Taking advantage of p′, the on-line HTR subsystem decodes t into
d̂ and, then, the user may type some keystrokes, κ, possibly aimed to amend d̂ (and/or
maybe other errors in ŝ). A new prefix, p, is built from the previous prefix p′, along with
the decoded handwritten data, d̂, and the typed text, κ. The process ends when the
user types the special character “#”. In the final transcription, T , text obtained from
on-line handwriting decoding is marked in red color, while typed text is underlined.

An example of this inter-related off-line image recognition and on-line touch-
screen interaction is shown in figure 2. The potential increase in user comfort
comes at expense of a hopefully small number of additional interaction steps.
Assuming, for simplicity, that the cost of correcting an on-line decoding error is
just similar to that of another on-line touchscreen interaction, in this example
the user would need 3 interaction steps using MM-CATTI, compared with 2
corrections that would have needed a pure keyboard-and-mouse-based CATTI
system. Both compare very favorably with the 6 corrections required to post-edit
the original, non-interactively recognized hypothesis.

Let us now focus on eq. (5). Assuming independence between t and x, p, ŝ
given d, it can be approximated as:

d̂ ≈ argmax
d

Pr(x, p, ŝ | d) · Pr(t | d) · Pr(d)

= argmax
d

Pr(d | x, p, ŝ) · Pr(t | d) (6)

This independence assumpition, in some sense, results natural considering that
t is a signal of on-line touchscreen pen-strokes and x an image.
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As in Section 2, Pr(t | d) is modelled by HMM morphological models of
the words in d. On the other hand, here, Pr(d | x, p, ŝ) can be provided by
a language model constrained by the input image x, by the previous prefix p
and by the suffix ŝ produced at the beginning of the current interation step.
From these constraints, only the information provided by the prefix p and the
produced suffix ŝ is considered in the present work. More specifically, the HFR
subsystem should find adequate transcriptions of the touchscreen data t, which
are also suitable continuations of the prefix p′=p ŝa (formed by the given prefix
p and the part ŝa of the system-suggested suffix ŝ which the user accepts as
correct) and depending on ŝe, the remaining (wrong) word(s) in the suffix ŝ
(which the user tries to correct using touchscreen strokes); that is, Pr(d | x, p, ŝ)
≡ Pr(d | p′, ŝe).

3.1 Language Model and Search for MM-CATTI

To find an expression for the on-line language model P (d | p′, ŝe), we first find
one for P (d | p′). The problem is similar to that of eq. (4). In this case, the
prefix is p′ (the length of which is assumed to be k′); that is, p′ = p ŝa = pk′

1 . If
we further assume the user only handwrites one word per interaction, then the
length of d is 1 and eq. (4) simplifies to:

Pr(d | p′) � P (d | pk′
k′−n+2) (7)

Now, excluding the wrong-recognized word ŝe from the model, we have:

Pr(d | p′, ŝe) �

⎧⎪⎨
⎪⎩

0 d = ŝe

P (d | pk′
k′−n+2)

1 − P (ŝe | pk′
k′−n+2)

d 
= ŝe

(8)

It is worth noting that Pr(d | p′, ŝe) is directly derived from the original (n-
gram) language model used in the non-interactive off-line HTR system and no
further parameters need to be estimated.

Orig, Bi-gram Model (L)

de la la

media

actualepoca

edad media

actual

m
ed

ia

epoca

edad

de

edad

actual

media

Cond. Bi-gram Model (Ld)

la

epoca

edad media

epoca

edad

Fig. 3. Example of MM-CATTI dynamic bi-gram language model generation. L is the
original bi-gram model used by off-line HTR system, whereas Ld is the bi-gram sub-
model, derived from L, which takes as initial state the one corresponding to the prefix
“la”. This derived language model is used by the HFR subsystem to recognize the
handwritten word “edad” intended to replace the off-line misrecognized word “media”,
which was disabled from Ld.
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A simple implementation of eq. (8) is shown in figure 3. This example assumes
the user wants to correct the off-line misrecognized word “media” by handwriting
the word “edad” (for example). Hence, the HFR bi-gram model is conditioned
by the prefix context word “la” and has the word transition “media” disabled.

As shown in the example, and unlike it happened in CATTI, no “linear lan-
guage model” of the prefix p′ is concatenated with the bi-gram model L starting
at the labelled node “la”, because the on-line touchscreen data corresponding to
p′ do no exist in this case. Moreover, as we assume that at most one feedback
word is handwritten per interaction step, only the transitions from the starting
node (“la” node in the example) need to be considered.

4 Off- and On-Line HTR Systems Overview

A similar conceptual architecture is adopted for both the off- and the on-line
basline HTR systems. It is composed of three modules: preprocessing, feature
extraction and recognition. The first two entail different techniques depending
on the data type, but the last one is identical for both subsystems.

On the one hand, off-line HTR preprocessing [11] is aimed at correcting image
degradations and geometry distortions: skew and slant corrections and size nor-
malization. On the other hand, on-line handwriting preprocessing [12] involves
only two simple steps: repeated points elimination and noise reduction.

Feature extraction in the off-line case, transforms a preprocessed text line
image into a sequence of 60-dimensional feature vectors (see [13] for details);
whereas a touchscreen coordinates sequence is transformed into a new speed- and
size-normalized temporal sequence of 15-dimensional real-valued feature vectors
as in [14].

As mentioned in section 1, the recognition process is based on HMMs. Thus,
characters are modeled by continuous density left-to-right HMMs, using 6 states
for all HMMs in the off-line case, and a variable number of states for the different
character classes in the on-line case. In the latter case, the number of states of a
particular HMM is in function of the average length of of feature vector sequences
used to train it. A Gaussians mixture serves as a probabilistic law to model the
emission of feature vectors of each HMM state. In the off-line case, 64 Gaussian
mixture components were used per state, while 16 Gaussians were employed in
the on-line case. The optimum number of HMMs states as well as the number
of Gaussian densities per state were tuned empirically on the corpora explained
in the section 5.2.

Each lexical word is modelled by a stochastic finite-state automaton (SFS),
which represents all possible concatenations of individual characters to compose
the word. On the other hand, text sentences are modelled using word bi-grams
with Kneser-Ney back-off smoothing [15], estimated directly from the training
transcriptions of the text line images. These bi-grams are directly used in the
baseline, non-interactive HTR systems and are the basis for the “dynamic”,
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prefix-conditioned CATTI and MM-CATTI language models for Pr(s | p) and
Pr(d | p′, ŝe), respectively.

All these finite-state (HMM character, word and sentence) models can be eas-
ily integrated into a single global model on which a search process is performed for
decoding the input feature vectors sequence into an output sequence of words.
This search is efficiently carried out by using the Viterbi algorithm [10], which
can be adapted also for the search required in both CATTI and MM-CATTI
interactive frameworks. As discussed in Section 3, MM-CATTI language mod-
elling and search, are simpler in this case because, we have restricted our present
study to single whole-word touchscreen corrections.

5 Experimental Framework

In order to test the effectiveness of both CATTI and MM-CATTI approxima-
tions, different experiments were carried out. The performance measures and the
different corpora used in the experiments are explained bellow.

5.1 Assessment Measures

Two kinds of measures have been adopted. On the one hand, the quality of
conventional, non-interactive transcription is given by the well known word error
rate (WER), which is a good estimate of user post-editing effort.

On the other hand, the effort (number of interactions/corrections) needed by
a human transcriptor to produce correct transcriptions using the CATTI system
is estimated by the word stroke ratio (WSR). Using a reference transcription
of each text image, the WSR is computed as the number of (word level) user
interactions that are necessary to achieve the reference transcription of the text
image considered, divided by the total number of reference words. This makes
WSR comparable with WER. Moreover, the relative difference between WER
and WSR gives us an estimation of the reduction in human effort that can be
achieved by using CATTI with respect to using a conventional HTR system
followed by human post-editing.

Apart from these measures, the conventional classification error rate (ER) will
be used to assess the accuracy of the on-line HFR subsystem under the different
constraints entailed by the MM-CATTI interaction process.

5.2 Corpora

Both CATTI and MM-CATTI were evaluated on the off-line handwritten sen-
tences from IAMDB corpus. In addition, for MM-CATTI, the on-line UNIPEN
corpus was employed to simulate the production of touchscreen HFR data.

IAMDB Corpus: This publicly accessible corpus1 was compiled by the Re-
search Group on Computer Vision and Artificial Intelligence (FKI) at Institute

1 http://iamwww.unibe.ch/˜fki/iamDB/
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Number of: Training Test Total Lexicon

writers 448 100 548 –
phrases 2,124 200 2,324 –
words 42,832 3,957 46,789 8,938
characters 216,774 20,726 237,500 78

Fig. 4. Left: Basic statistics of the IAMDB corpus and its standard partition. Right:
examples of IAMDB handwritten sentences.

Number of: Train Test Total lexicon

digits (1a) 9,032 6,921 15,953 10

letters (1c) 39,354 18,894 58,248 26

symbols (1d) 10,321 6,849 17,170 32

All Together 58,707 32,664 91,371 68

Fig. 5. Left: Basic statistics of the UNIPEN categories 1a,1c and 1d in the
Train-R01/V07 dataset and their corresponding partition definitions. Right: Some ex-
amples from these categories.

of Computer Science an Applied Mathematics (IAM). The acquisition was based
on the Lancaster-Oslo/Bergen Corpus (LOB).

The last released version (3.0) is composed of 1,539 scanned text pages, hand-
written by 657 different writers. No restriction was imposed related to the writ-
ing style or with respect to the pen used. The database is provided at different
segmentation levels: characters, words, lines, sentences and page images. In our
case, the sentence segmentation level is considered (see figure 4 right).

The corpus was partitioned into training and test sets. The former is composed
of 5,799 text lines, handwritten by 448 different writers, which add up to 2,124
sentences, whereas the latter comprises 200 sentences, written by 100 different
writers. Figure 4 (left) summarizes all this information.

In order to determine a baseline performance figure, an experiment using the
basic non-interactive off-line HTR system (outlined in section 4) was performed.
After some parameter tuning, a 25.8% WER was obtained. This compares rea-
sonably well with state-of-the art, non-interactive results on this data-set [16].

UNIPEN Corpus: The UNIPEN Train-R01/V07 dataset2 comes organized in
several categories: lower and upper-case letters, digits, symbols, isolated words
and full sentences. However, the UNIPEN isolated words category does not con-
tain all (or almost none of) the required word instances to be handwritten by
the user in the MM-CATTI interaction process with the IAMDB text images.
Therefore, they were generated by concatenating random character instances
from three UNIPEN categories: 1a (digits), 1c (lowercase letters) and 1d (sym-
bols). Some character examples from these categories are shown in figure 5.

2 For a detailed description of this dataset, see http://www.unipen.org
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In order to tune the parameters of the 68 on-line character HMMs, experi-
ments were carried out on each of these UNIPEN categories, partitioned into
the training and a test sets shown in the table of figure 5. All on-line character
samples were previously preprocessed using the preprocessing and feature extrac-
tion modules outlined in section 4. The classification error rates (ER(%)) ob-
tained for digits, letters, symbols and merging-all-sets were 3.3%, 15.8%, 24.9%
and 22.5%, respectively. These results are comparable with the state-of-the-art
results obtained for this dataset [17].

Moreover, in order to establish a performance baseline for the HFR subsystem,
a word recognition experiment was carried out. All the 778 words that will be
needed in the MM-CATTI experiments were generated and 11.3% of them were
misclassified by the plain on-line HTR system without using any CATTI-derived
contextual information.

6 Results

Different experiments have been carried out to assess the feasibility and potential
of the CATTI and MM-CATTI approaches. For the CATTI approximation, two
types of results are reported: the conventional WER (first column of table 1),
and the WSR (second column of table 1). The relative difference between them
is called Estimated Effort-Reduction (EER, sixth column of table 1).

The 21.8% WSR in the table 1 corresponds to a total 778 words that the user
has had to correct. In the MM-CATTI approximation, these words would have
had to be handwritten by the user on the touchscreen. As discussed in section 5.2,
this is simulated here through the concatenation of character samples from the
UNIPEN corpus.

The 778 on-line words obtained in this way, were used to assess the on-
line handwritten word decoding accuracy under increasingly constrained MM-
CATTI language models explained in section 3.1. The left panel in fig. 6 plots
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Table 1. From left-to-right: word error rate (WER) and word stroke ratio (WSR);
contributions of both modalities: on-line touch-sccreen input (TS) and keybord in-
put (KBD); MM-CATTI total interaction steps; and overall estimated effort reduction
(EER) for both approaches

WER(%) WSR(%)
On-Line MM-CATTI Overall EER(%)

TS(%) KBD(%) Total Iter.(%) CATTI MM-CATTI

25.8 21.8 20.2 1.6 23.4 15.5 9.3

word error rates (ER) as a function of the grammar scale factor (GSF), and
shows a table (right-panel) summarizing the results of ER for a GSF=30.

On the other hand, table 1 shows the CATTI WSR decomposed into a part
corresponding to successful on-line touch-screen handwritten decoding input
(TS) and another corresponding to the words that required typed input (KBD)
(third and fourth columns respectively). Furthermore, the fifth column shows
the MM-CATTI total interactions (in %) resulting from adding the part corre-
sponding to keyboard input (KBD) to the CATTI WSR. Finally, the last column
shows the overall estimated effort reduction (EER) in the MM-CATTI approach,
computed from the relative difference between WER and MM-CATTI total in-
teraction rate. As mentioned in section 3, MM-CATTI overall effort reduction
is estimated under the simplifying (but reasonable) assumption that the cost
of keyboard-correcting a feedback on-line decoding error is similar to that of
another on-line touchscreen interaction step.

7 Remarks and Conclusions

We have reviewed a recently introduced interactive approach for off-line handwrit-
ten text recognition (CATTI [4,5]). In this approach user feedback is provided by
means of keystroke corrections, which are used to consolidate increasingly longer
correct prefixes of the final transcription. These prefixes are used by CATTI to to
suggest new suffixes that the human transcriber can accept or modify until a full,
correct target transcription is finally produced.

Furthermore, based on the CATTI approach we have proposed to use on-line
touch-screen handwritten pen strokes as an alternative means to input the re-
quired word corrections. We have called this new approximation “multimodal
CATTI” (MM-CATTI). From the results, we observe that this much more er-
gonomic feedback modality can be implemented without significantly increasing
the number of interaction steps due to errors caused by the decoding of the
feedback signals. This is achieved thanks to the constraints derived from the
interative process.

In future works, we plan to carry out field experiments with real users (expert
transcribers) to show whether this kind of systems can actually save significant
amounts of human effort under the considered assumptions.
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Abstract. Meeting assistants pose some interesting and unique challenges to the 
enterprise of software design and evaluation. As the technology reaches greater 
levels of development, we must begin to consider methods of evaluation that 
reach beyond regarding meeting browsers as signal replay and information 
search tools, and begin to assess the dimensions in which meeting assistants and 
browsers can augment or hinder human cognition and interaction. Some of 
these dimensions are considered, inasmuch as they were encountered during 
development of the DARPA CALO Meeting Assistant and Meeting Browser. 

Keywords: meeting browser, meeting assistant, multimodal, evaluation, design, 
user requirements, CALO. 

1   Introduction 

Meetings are an important aspect of modern life. Sometimes people miss a meeting or 
forget exactly what happened in one, and it would be handy if those people could just 
ask a computer to tell them the things they need to know. It would be even handier if 
that computer could find and re-create the relevant parts of the meeting, from any 
perspective in the room, like computers do on Star Trek. Unless, of course, the 
computer goes berserk and starts to make up things that never happened. But let’s not 
worry about that yet. 

Of more pressing concern is the question of how we can develop meeting 
assistance tools that render meetings more productive and the information exchanged 
in them more durable and accessible. From a high-level perspective, there are two 
dimensions on which meeting participants may be aided: participation and memory. 
The dimension of participation includes finding ways to help people to interact 
efficiently and constructively and to exchange the right kinds of information at the 
right moments. The dimension of memory includes finding ways to make meeting 
information “stick,” so to speak, either by making it more accessible in people’s heads 
(their “organic memory”) or by making it more accessible somewhere else, such as in 
the notes they’ve taken (or “prosthetic memory”) [1]. 

The relation between these two dimensions of participation and memory is fairly 
orthogonal—which means they don’t always work hand-in-hand, and a tool that helps 
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one does not necessarily help the other. Efforts at aiding participation can hinder 
memory by failing to encourage information consolidation. Likewise, tools designed 
to help memory can hinder participation. But participation and memory can 
sometimes be tapped in tandem, as happens when videoconferencing tools aid 
memory by promoting cross-modal encoding. So when faced with the task of 
evaluating meeting assistance tools, we cannot in good conscience invoke only one of 
these dimensions as grounds for appraisal. Rather, as designers of meeting assistants 
and meeting browsers, we must consider how both of these dimensions of 
participation and memory can be evaluated, and develop tools and methods for 
striking the right balance between the two, given the varying circumstances in which 
such tools may be used. 

One further consideration should not be missed when designing tools that broker in 
human interaction and language: Any tool that interacts with people ultimately has the 
potential to change the way those people behave, and thus may alter the effectiveness 
of—or even break—the tool itself. For example, a system that identifies people’s 
spoken commitments during a meeting and creates a record of them may eventually 
cause people to be more specific and deliberate when speaking about commitments, 
or may make them less likely to commit to things using speech. In the same way that 
laptops, PDAs, and presentation software have changed the way people act during 
meetings over the past few decades, so will the meeting assistant technologies we 
develop today change the behavior of tomorrow’s meeting-goers. Any technology that 
aims to endure must be flexible enough to adapt to changing patterns of interactive 
behavior. 

The aforementioned sensitivity of such tools to the vagaries and reactivity of 
human behavior throws a spanner in the works of typical software development 
cycles that tend to progress iteratively, basing the next iteration’s set of development 
requirements on the failures of the prior iteration. This is the iterative Catch-22 of 
development for meeting assistants, and the only way out of the mire is to design 
tools that adapt to their circumstances the way people do. Let us keep these thoughts 
in mind as we review a couple instances of interfaces designed for the DARPA 
CALO Meeting Assistant (CALO-MA). 

2   Meeting Assistance Tools 

Meeting assistance tools come in two flavors: online and offline. An online tool 
allows participants to interact with it during the meeting. This would include anything 
from traditional notepads and whiteboards to a virtual secretary that interacts with the 
participants. An offline tool, by contrast, is designed to be used at some point outside 
the meeting. It might help participants prepare for a meeting, or it might allow them to 
revisit aspects of the meeting after it’s finished. Such tools would include browsable 
video recordings or transcripts, or a daemon that quietly identifies the tasks people 
agree to do during a meeting and places them on participants’ to-do lists when they 
return to their desks. (A review of online and offline approaches can be found in [2]). 

Each of these two flavors of meeting assistance tools has its advantages and 
disadvantages. Online tools have the advantage of allowing people to specify and lock 
in information while it’s fresh in their minds, and can foster immediate feedback 
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regarding the quality and accuracy of information as it is stored. But the presence of 
the technology in the ongoing meeting can distract from normal interaction and from 
the decision-making process. As a simple example, when people take notes during a 
meeting, they must either tune out of a conversation for a moment, or halt the 
conversation process as they write their notes. Offline interfaces, on the other hand, 
have the advantage of allowing meeting participants to focus on participation, and 
encourage feedback to happen at a more leisurely pace (such as later in the day, when 
participants return to their desks). If an offline tool is part of a wider suite of 
applications, it can help to integrate information established during meetings with 
other desktop tools, such as to-do lists, calendars, e-mail, or project planners. 
However, many management-level workers of our era rightfully smirk at the idea of 
attending to meeting-related interfaces after “returning to the desk,” since their 
workdays often consist of a series of one meeting after another, with no desk to be 
seen until the end of the day, by which time a great deal of information may be 
degraded or completely forgotten.  

Each of these options poses challenges to design and evaluation. We’ll first consider 
the offline interface experience for CALO-MA. 

2.1   The CALO Offline Meeting Assistant and Browser 

As part of a wider DARPA CALO research project effort, the CALO-MA group 
inherited a mandate to design a meeting assistance system that would not only be 
effective and usable, but also would learn to improve over time, preferably in a 
personalized manner. This mandate nudged development toward two simultaneous 
efforts: (1) an effort to create models of speech and behavior that begin as functioning 
generalized models, but can adaptively evolve into personalized ones; and (2), an 
effort to solicit and incorporate user feedback that can retrain those models and 
improve and personalize them over time. These models include ASR language 
models, gesture and handwriting models, topic models, and models to classify sets of 
ASR-transcribed spoken utterances into dialogue acts, question and answer pairs, 
action items, and decision discussions. 

A second, self-imposed mandate of CALO-MA was that the system under 
development should not include any type of in-meeting dialogue system, since such a 
system could prove disruptive to the natural flow of meeting dialogue. So maintaining 
natural participation was prioritized over the possible benefits of having a system that 
participants could explicitly address. Each participant is given a wireless headset that 
sends audio to a VoIP client. The VoIP client also provides a small suite of software 
collaboration tools, such as chat, notes, and a shared whiteboard. The system is 
designed to work equally well for remote, distributed meetings as for meetings carried 
out with all participants at the same table. 

Post-Meeting Process. When participants finish their meeting, audio is delivered to a 
server that begins a chain of processes, such as producing an ASR transcript and 
detecting topics, question-answer pairs, and action items. When complete, an e-mail is 
sent to the participants, who may then review the transcript and extracted information 
in an offline meeting browser. This browser displays the transcript, with audio 
playable from any point. But more importantly, it displays hypotheses for the distilled 
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information that users would be likely to want to retain a record of, such as action 
items and decisions (see [4] and [5] for more extensive descriptions of the CALO-MA 
meeting browser and its workings). 

These hypotheses, as results of machine learning, are far from perfect. So the 
meeting browser is designed to harvest the implications of ordinary user actions as 
implicit user feedback that can be used to retrain classifier models without explicitly 
asking the user for feedback. For example, action items from the browser that a user 
adds to a to-do list are marked as valid positive instances for future retraining, while 
action items that are explicitly rejected are tagged as negative instances for retraining. 
If a user changes the description or responsible party of an action item, these actions 
are also harvested for future retraining, so the system will improve over time. Action 
item detection models retrained on even a few meetings’ worth of feedback data can 
show reasonable improvements [5]. 

Humans in the Loop. Even though this offline system is designed to be unobtrusive 
and essentially invisible during the meeting process, aspects of the system’s design had 
a discernable effect on people’s behaviors during meetings, which in turn affected the 
system’s behavior—resulting in the aforementioned iterative Catch-22. For example, 
an action item detection system was initially trained on transcripts from a diverse set of 
meetings (collected from the ICSI and ISL corpora, as well as some meetings recorded 
at SRI and CSLI). Participants’ action items were detected by this model during test 
meetings at SRI and posted to an “Action Items” section of the offline meeting browser 
which participants could review a few hours after each meeting. 

But the action item detection system did not work as well as expected for some 
participants, who expressed surprise after they diligently and explicitly stated 
declarations of action items during meetings, using statements along the lines of, “So 
here is an action item for you, to write up a plan before the next meeting.” Not 
surprisingly, the original utterance data used to train the action item classifiers did not 
tend to contain such explicit statements of task commitments; and the words “action 
item” were not present in a single training meeting. So why did these new participants 
suddenly speak this way? Most likely because they were now aware that action items 
were being explicitly noted by some external entity, and because the meeting browser 
itself displayed a rather prominent section labeled “Action Items,” which primed the 
participants to use that term. The detection system thus needed to be retrained on a set 
that included meetings that contained these types of utterances, so such explicit talk 
about “action items” would also be detected as such. 

By contrast, a later iteration of the system actually worked better than expected, 
but for a similar reason: For each action item detected, the meeting browser displayed 
fields for the person(s) responsible for the action item, as well as the timeframe in 
which the action item should be completed, and these fields were populated when 
such information could be identified. But the presence of those fields in the browser 
prompted meeting participants to produce more utterances that specified not only 
what tasks needed to be done, but who would do them and when. Since these types of 
utterances contribute to the success of overall action item detection, this unexpected 
change in behavior led to better detection of action items than prior iterations [5]. 
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2.2   Online Meeting Assistants 

If people’s behavior during meetings can be influenced by interfaces that do not 
actively participate in the meeting, we must wonder about the extent to which their 
behavior will change when different types of meeting assistance interfaces are 
introduced into the meeting room itself, and what effects these interfaces will have on 
participation and memory. As mentioned earlier, the tools people currently use during 
meetings—such as laptops and notepads—incur a certain level of cognitive load which 
can require people to “check out” of the meeting (even if only briefly) as they attend to 
the tools that promise to help them remember more information down the line.  

The current state of technology, as demonstrated by the existing CALO-MA 
system, shows potential for different types of in-meeting interfaces that could help or 
hinder both participation and memory. For example, consider the cognitive load 
incurred by a person engaged in ordinary note-taking: While listening, that person 
must select information from dialogue that is salient, then distill and consolidate that 
information into a sensible chunk, and must finally exert the language and motor 
skills required for production of that distilled information onto a piece of paper (or 
keyboard). It’s no wonder that many people have a hard time participating in a 
conversation while simultaneously taking notes. But if a real-time ASR transcript 
were generated during a meeting in progress and scrolled before each participant, 
participants could take notes simply by marking or highlighting the portions of the 
transcript they wish to revisit later. Such a process could aid participation by 
removing the cognitive load involved in note-taking; only listening and selection 
would be required. (Note that lawyers and judges in the courtroom have had access to 
this sort of technology advantage for years, thanks to digital networks that link their 
stations to electronic transcripts produced by professional stenographers.) 

An even simpler interface might be to give each participant some type of “button” 
which could be pressed whenever a salient event happens during the meeting. Once a 
region of the meeting is indicated as containing salient information, machine learning 
techniques could attempt to extract that salient information and save it for the 
participant to access later, or even to act on it in some way. In either case, participants 
are freed from a good-deal of “record-keeping” and allowed to engage in more 
productive interactions. 

But would these interactions necessarily be more productive? From the standpoint 
of participation, such interfaces may indeed allow people to participate more. But 
more is not always better. From the standpoint of the dimension of memory, we may 
arrive at a different perspective: Because such interfaces can provide a substitute for 
the cognitive process of consolidation that would normally take place during note-
taking, they could actually lead to meetings where people talk more, but walk away 
remembering less.  

Of course, this type of question can only be answered through an empirical study, 
and an experiment designed to provide that answer is now underway. Cognitive 
measures for participation and cognitive load can be obtained through both subjective 
measures, such as questionnaires given to meeting participants, and objective 
measures, such as comparative statistics on the contributions people make during 
meetings when using different types of interfaces. For measures of memory, the best 
method may be to test how well people remember the things that happened during a 
meeting by asking them to recall events and decisions at later intervals. 
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3   Final Thoughts 

This brief discussion has covered some real-world attempts to develop meeting 
assistant and browser interfaces over the past two years, as part of the CALO-MA 
project. We have discussed possibilities for both offline and online interfaces, and 
looked at how the dimensions of participation and memory must ultimately figure into 
evaluations of such interfaces, pointing the way to a (perhaps foggy) realm of 
evaluation beyond gold-standard annotations and F-scores. We have also discussed 
some examples of how the typical software design process can result in an iterative 
Catch-22, which hints at a need for design methods that treat meeting assistant 
software as part of the interactive process, and not an appendix to it. Only software 
that can adapt to the behaviors and variations of its users will prove flexible enough to 
avoid that iterative loop. 

Other methods of evaluation for meeting browsers have been put forward, such as 
the BET [6,7], and these methods work well for evaluating browsers of automatically-
generated meeting information repositories that will be searched by users who did not 
necessarily participate in the meeting. But when it comes to evaluating tools that are 
more “embedded” in the process of meeting participation and incorporating 
information and decisions into the everyday work cycle, there are many more 
possibilities left to consider. 
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Abstract. Recently, it has become more and more common for colleagues and 
project teams to cooperate at a distance. In order for cooperation at a distance to 
really boom, it should be made easier to have ad hoc, short, informal meetings. 
Here it is important to receive cues about the availability of the person you wish 
to speak to. These cues are usually apparent in a situation of physical proximity, 
but they are not readily accessible at a distance. Also, attending formal meet-
ings should be made more efficient and attractive, by allowing participants to 
just attend those parts of the meeting that are relevant to them. This ‘meeting 
hopping’ should be organized in a way not detrimental to the ongoing meeting. 
This paper provides an exploration of how a virtual ‘meeting assistant’ that 
could support remote meeting participants to initiate, join and leave both formal 
and informal meetings in a natural, non-obtrusive way should be designed, in 
the form of a scenario and some examples of user interfaces. 

Keywords: Availability cues, remote meetings, meeting assistant, user inter-
face, scenario. 

1   Introduction 

Recently, it has become more and more common for colleagues and project teams to 
cooperate at a distance. This is partly caused by the fact that more people have started 
teleworking, i.e. “working in a location away from the main office or production fa-
cilities, without personal contact with colleagues, but instead through electronic 
communication (Cascio, 2000)”. Another important reason is internationalization of 
work, for instance in the context of the European Union or multinational companies. 
Allowing people to be still able to cooperate when not co-located physically, is made 
possible through the advance of multiple Information and Communication Technol-
ogy (ICT) applications, such as teleconferencing, electronic meeting rooms, chat, 
shared (network) disks and electronic cooperation spaces.  

Cooperation at a distance offers many advantages to the society, organization as 
well as employee, such as less traveling, a higher productivity and a higher work satis-
faction. However, part of the other side of the medal is the fact that people who coop-
erate at a distance feel they lack personal contact with colleagues, diminishing social 
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commitment, cohesion and team spirit, and find it hard to tune work to one another 
(Bailey & Kurland, 2002). Despite the availability of various ICT applications, people 
still experience a threshold for participation in remote meetings. Important causes of 
this threshold are that remote meetings need to be planned and tend to be rather formal 
and long, allowing limited support for having ad hoc, more informal and shorter meet-
ings. This latter type of meeting is much easier to organize in the traditional workplace. 
During informal communication not only information transfer takes place (as addition 
or correction to the formal information provided), but it is also a way of finding a con-
nection with colleagues. A lack of informal contact also strengthens the ‘feeling of dis-
tance’ (Kraut et al., 1998; Mulder, 2004). 

In order for cooperation at a distance to boom, it should be made easier to have 
these informal meetings, e.g. similar to having a short conversation in the corridor of 
the office. Here it is important to receive cues about the availability of the person you 
wish to speak to, for instance about whether the person is currently in another meet-
ing. These cues are usually apparent in a situation of physical proximity, but they are 
not accessible at a distance. Also, attending formal meetings should be made more ef-
ficient and attractive, by allowing participants to just attend those parts of the meeting 
that are relevant to them. This ‘meeting hopping’ should be organized in a way not 
detrimental to the ongoing meeting. For example, the participant should be able to re-
ceive cues about: when it is a good time to join the meeting (when the meeting is 
‘available’ to him) in order not to interrupt the meeting; to be up-to-date about what 
has been discussed during his absence, to avoid the meeting participants having to in-
terrupt the meeting to inform him about the proceedings so far; and to indicate when 
he is leaving the meeting (ending his availability to the meeting, but becoming avail-
able to other people, for instance for an informal meeting).  

The advance of novel multi-media and automatic recognition and processing tech-
nologies is now mature enough to start making it possible to check the availability of 
both people and meetings in an intuitive manner, and to provide real-time updates of 
(parts of) meetings for participants who are late join the meeting. In this paper we ex-
plore the possibilities of applying these novel technologies to create a virtual ‘meeting 
assistant’ that supports remote meeting participants to initiate, join and leave both 
formal and informal meetings in a natural, non-intrusive way. This type of meeting 
support is argued to be a first step towards making remote meetings more dynamic, 
and hopefully also more efficient, effective and satisfactory for participants.  

First, we further elaborate on the ideas of supporting initiating and joining/leaving 
a meeting, based on an analysis of how this is accomplished in situations of physical 
proximity. The notions of both availability and participant status play important roles 
here. Then a scenario is presented in which two situations are explicated: a situation 
in which a person is late joining a meeting, and one in which an expert is ad hoc  
invited to join an on-going meeting. Both scenarios are illustrated by user interface 
concepts of a virtual project environment. Further, some initial comments on the sce-
narios are provided, which resulted from a focus group discussion on future meeting 
support tools. The paper finishes with an outlook on future work on the meeting assis-
tant functionalities presented here as well as suggestions on how these functionalities 
can be extended.   
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2   Assistance for Remote Meetings 

Both when initiating a remote meeting and when joining a meeting that has already 
started, the potential meeting participant should receive cues about the availability of 
the person(s) he wants to meet with or the meeting he wants to join. Additionally, in 
the case of joining a meeting, the person should get an overview of the proceedings so 
far. Once the meeting has started or the person has joined, all participants are assumed 
to be fully available to the meeting and, consequently, not available to the outside 
world. However, a person from the outside world may still try to contact a person who 
is attending a meeting, if the urgency is high. These outside persons may or may not 
have access to the proceedings of the meeting, depending on their statuses. 

2.1   Initiating a Meeting 

Before initiating a meeting with someone, an assessment should be made of whether 
the person is available for communication. In situations of physical proximity, people 
make use of various cues, which together form an impression of the availability for 
communication. In general, humans are remarkably skilled at using subtle social cues 
about the presence and activities of others to govern their interactions (Erickson & 
Kellogg, 2000). For example, particular availability cues are linked to the person one 
tries to contact, the current situation of the person, the relationship between the two 
people and additional (digital) information on the current activity: 

• Person cues: Background information (status, knowledge, experience, skills, inter-
ests, private information); activity and behaviour (in a conversation, in a formal 
meeting, working, pausing, absent, medium use); location and body (sitting behind 
desk, in the vicinity of the desk, somewhere else in the room, posture, gestures); 
appearance (conspicuous clothing or accessories, symbols or insignia, dress code); 
emotional constitution (character, mood); 

• Situation cues: Type of room ((in)formal, own office, meeting room); place and 
time (in a situation of physical vicinity there is no difference in place and time, but 
time can be seen in the context of an activity: almost finished, not started yet, etc.); 
dimensions, acoustics and appearance (size of the room, quality of interior, audibil-
ity of what goes on in the room, lighting); atmosphere and accessibility (door ajar, 
music, laughter, tone of a conversation, type of lighting); other persons present 
((un)known colleague, (un)known customer, unknown person). 

• Relationship cues (between the two people): Shared knowledge and experience (sto-
ries, media (photo’s, video); shared culture (company culture, subculture, e.g., what 
does it mean if the door is closed); forms of address; relationship in the communica-
tive context (type of relationship: work, project-specific, old/new, colleague, private, 
friend, intimate, family, acquaintance, unknown), hierarchy (superior, subordinate, 
equal). 

• Additional information cues: (Public) electronic agenda, use of shared (network) 
disks and electronic cooperation spaces. 

 

The cues are multidimensional, in the sense that someone on the basis of one cue may 
not seem to be open to communication (someone is talking to another person), but on 
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the basis of another cue, he is (the door is open). The combination of the cues leads to 
an initial assessment of the availability. Subsequently, the contact seeker weighs the 
assessment against the importance or urgency of the communication, and then acts 
upon it. The act can take several forms: refrain from communication and possibly try 
later or find somebody else; ask whether the person is available for communication; 
or start communicating (barge in). The latter two situations may result in the desired 
communication, or in a kind of ‘negotiation’, which can again lead to cancellation, 
postponement or referral to somebody else. 

In situations of trying to initiate remote ad hoc communication most of the afore-
mentioned cues unfortunately are not readily accessible to the contact seeker. This 
makes it harder to assess whether it is the right moment to contact someone, and which 
communication means are best suited for that. Some existing informal communication 
means, such as chat or messaging applications offer the possibility to give an indica-
tion of the availability for communication. This availability is presented in different 
ways in different applications (e.g., iChat, GTalk, MSN, ICQ and Skype), but can 
roughly be subdivided into ‘available’, ‘busy’, ‘away’ and ‘offline’. The number of  
indications for availability in current applications is significantly smaller than the num-
ber of cues we display in a physical situation. Also, these indications are always univo-
cal, and one always has to take the initiative to set one’s availability. The advantage is 
that one can control which indication to communicate and has the possibility to be 
slightly dishonest about it. Unfortunately, this means that the contact seeker can never 
be sure about the real status, which can form a threshold for trying to get in touch.  

In future applications, it should be easier to make a more realistic assessment of the 
availability of the potential remote communication partner, assuming that working at 
a distance should become more similar to working in a situation of physical prox-
imity. In this vision, there is no need for people to actively indicate their availability 
status, but a potential contact seeker can derive the availability from cues that are dis-
played. These cues may stem from the existing digital information sources mentioned 
above, but may be supplemented with additional information, e.g., media usage 
(computer, telephone), specific document and application usage, indication of work-
load (based on, e.g., number of open documents, keyboard hit frequency), and live 
audio and video (web cam) of the person (possibly blurred). 

2.2   Joining (or Leaving) a Meeting 

For a person wishing to join (or leave) a meeting, a list of similar availability cues as 
the ones described above can be composed, in this case not related to an individual 
person but to the meeting as a whole. Whether or not a person who wants to join the 
meeting has access to these cues and in which form they are presented to him, de-
pends on his status. In the envisioned dynamic remote meetings of the future, at dif-
ferent points in time, participants may have different statuses. A first division is  
between people who are not invited and people who are invited to the meeting. People 
who are not invited are not aware of the meeting, but may receive an ad hoc invitation 
to join the meeting at a certain point in time, e.g. for giving an expert opinion on a 
certain matter that is being discussed. People who are invited may either be absent  
or present at the meeting. If they are currently absent, they may have declined the in-
vitation, they may be late to arrive, or they may have left the meeting temporarily or 
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definitely. Also, people may be standby, i.e., they know they could be asked to join at 
some point during the meeting, or they may have indicated to be only interested in 
certain parts of the meeting, at which points they will be alerted. Finally, people who 
are present may either be just listening in or (supposedly) actively participating 
(which may vary from having the floor, listening, paying attention to not paying atten-
tion at all) in the meeting. It is important for all of these statuses to be clear to the par-
ticipants of the meeting. The question is how the meeting assistant should indicate 
these different statuses to the meeting participants. 

Also, the meeting assistant should automatically provide information on the pro-
ceedings of the meeting so far, for catching up purposes when a person is late, is only 
interested in parts of the meeting, or asked to join a meeting only for a specific part. 
This requires real-time processing of meeting information, which could be made possi-
ble through the application of novel multi-media and automatic recognition and proc-
essing technologies that create real-time digital, annotated recordings of meetings 
(AMI, 2003). This functionality builds further on previous work on off-line meeting 
browsers, i.e., applications that supports users in finding elements of interest in (multi-
media) digital recordings that have been captured during meetings (Tucker & 
Whittaker, 2004; Cremers et al, 2005). Existing research prototypes of these innovative 
meeting browsers, such as Ferret (Wellner et al., 2005) provide synchronized access to, 
among other things, videos of participants, presentations held, loggings of who speaks 
when, transcripts of dialogues and summaries (minutes). How to present this type of 
information to people with various meeting statuses is an open question. 

3   A scenario 

3.1   A Project Team Spread Geographically  

A project team, consisting of eight persons, is cooperating in a project. Because of the 
geographical distribution they are dependent of ICT facilities for information ex-
change and communication. The project team has access to a virtual project environ-
ment, which helps them to communicate more effectively with each other, formally as 
well as informally. An important characteristic of the environment is that team mem-
bers can show each other their current statuses, allowing others to judge whether they 
can disturb them at a certain moment in time. Also, the environment provides meeting 
updates for people who have missed parts of meetings. 

The scenario shows two situations. The first is a situation where one of the partici-
pants, Frank, arrives late for a formal meeting which has been planned ahead of time. 
The second situation is a more ad hoc decision during a meeting to ask someone to 
join the meeting, where it is of relevance whether this person is available to the meet-
ing or not. 

3.2   Frank Arrives Late (Joining a Meeting) 

A meeting is being held for which Frank is invited, but he is late. At arrival, Frank 
‘listens’ at the door to make a quick assessment of the situation, to decide whether  
it is a right time to enter the meeting room. The information presented to him (see  
 



320 A.H.M. Cremers et al. 

 

Fig. 1. Frank is late for a meeting 

Figure 1) can be personalized, where only information relevant to his personal inter-
est, role and status is shown.  

Frank can see that a part of the project team, Tom (the chairman, with a hammer), 
Steffan (who has indicated he will leave early) and Andrea, is present in the virtual 
project room. Frank overhears blurred audio and sees blurred video of the people in 
the room as well as a blurred graphic. Apparently an intense discussion is going on.  

Also, in the left bar he sees all invited but not present project members in blurred 
pictures. Their current statuses can be either ‘listening in’ (not being able to contrib-
ute), ‘not present’ (yet or anymore) and ‘declined’ the meeting invitation. His own 
virtual representation is still ‘not present’, with a ‘late’ message attached to it by Tom, 
whom he had already contacted about his late arrival. Other people have appropriate 
messages attached to their representations. Phillis has indicated that she is only inter-
ested in software issues and will receive a warning from the meeting assistant when 
this has become the current topic of the meeting. Rose is currently having a short 
meeting break and Anil is ill. 

Subsequently, Frank looks at the right part of the room which provides information 
on the current meeting. On top, the meeting agenda with its past, current and planned 
agenda items is shown. By clicking on a past agenda item, the summary of that item is 
shown. By default, in the middle, an overall summary of the meeting up till now is 
presented. The summary also includes the global meeting atmosphere, indicated by a 
circle positioned on a negative-positive scale, where the size of  the circle indicates 
the intensity of the interaction. Below, the current agenda item is presented with an 
overview of automatically recognized current topics, prioritized through size.  

Frank is not very interested in the current topic and does not feel like entering in 
the middle of the discussion, so he decides to wait another minute, gets some coffee  
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Fig. 2. Frank has joined the meeting, indicating ‘Just arrived’ 

and then enters the room. To enter the room he drags his image to the table at which 
point the comment ‘late’ is removed. Chairman Tom receives a message of his arrival 
and greets Frank. After entering the room (see Figure 2) all four participants, includ-
ing himself are visible in a live streaming image. The fact that they all participate in 
the same meeting is represented by the oval ‘table’ connecting all of them.  

3.3   Chairman Tom Invites Expert Peter to the Meeting (Initiating a Meeting) 

During the meeting an expert opinion is needed on a certain matter that is being dis-
cussed. Tom knows a person named Peter, who is an expert on the subject. They  
decide to invite Peter to the meeting. First Tom opens Peters profile from his list of 
contacts, using the invite button, to check his availability and to be able to initiate 
contact (see Figure 3).  

Peter’s profile shows indications of his availability: his calendar showing he is in 
the office and not in a meeting, his current level of activity and mood (e.g. based on 
his media usage, specific document and application usage, workload (e.g. based on 
number of open documents, keyboard hit frequency) and a blurred video created by a 
web cam. Tom can derive form the information that Tom is on the phone and his 
mood is not very positive. However, he can see that Tom still has quite some time 
available before he has to join another meeting. Since Tom is a personal acquaintance, 
he decides to wait for Peter’s phone conversation to end, and to take the chance to in-
vite him to join the meeting. In the mean time, he still monitors the current meeting, 
to stay up to date with the proceedings. 
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Fig. 3. Chairman Tom views marketing expert Peter’s profile in order to invite him 

4   Initial Evaluation of the Concept 

An evaluation session was organized to get initial feedback on the functionalities and 
the designs. The scenario was presented to eight persons who were all experienced 
meeting participants, as part of a focus group discussion on future meeting support 
tools. Both the scenarios and the designs were presented to them and the various pro-
posed functionalities were explained.   

In general, the scenarios were received well. Participants acknowledged the idea 
that participants of meetings could have different statuses, for instance in meetings 
with primary participants and ‘back benchers’. They could even imagine participating 
in two meetings at the same time, possibly with different statuses in each meeting. 
With respect to joining a meeting, the ‘catching up’ functionality was liked. Also, 
knowing about the current agenda item was considered useful, since they could all 
imagine wanting to join a meeting just at the point where an agenda item of interest 
starts. The possibility of calling in an expert was considered useful as well, since hav-
ing to look up information afterwards tends to delay proceedings. In addition, partici-
pants suggested it would be useful to have access to areas of expertise of all meeting 
participants, as well as their roles, in particular for catching up purposes. A final sug-
gestion was to offer the possibility of private communication between  the meeting 
particants during the meeting, similar to whispering in a face-to-face situation. A con-
cern was raised however on making meetings tóo efficient; sometimes it just takes 
time to think things over to reach better results. 
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5   Conclusions and Further Work 

The functionalities of the meeting assistant discussed in this paper focus on ‘meeting 
hopping’: making it possible to efficiently organize and participate in remote meetings. 
Main functionalities of the meeting assistant are the possibility to remotely assess a 
person’s current availability to attend a meeting, to smoothly join and leave ongoing 
meetings, without having to miss important information exchanged in periods of ab-
sence. This could be seen as a combination of support for balancing the workload and 
‘catching up’ (Post & Lincoln, 2008). To fully benefit from this dynamic way of meet-
ing, it should also be possible for an outside person to check the ‘availability’ of a per-
son attending a meeting for joining another meeting, if the urgency is high. Outside 
persons may or may not have access to the virtual meeting room, depending on their 
statuses. It could be possible for them to check the engagement of the person attending 
the meeting: is the person currently speaking, listening or not paying attention at all. 
These engagement cues could help the outside person weighing whether or not to dis-
turb the meeting participant.  

The ideas presented in this paper should be further developed to meet requirements 
of persons who are experienced in remote cooperation and meeting. Also, user inter-
face versions of the meeting assistant should be developed to evaluate how interac-
tions that minimalize interruption of the ongoing meeting should be designed. In order 
to actually build these functionalities, real-time performance of relevant technologies 
should be assessed. Further, other possible functionalities of a meeting assistant 
should be explored (Post & Lincoln, 2008), such as goal orientation (e.g., agenda 
management and leadership support) and engagement enhancement (e.g., compensat-
ing for bandwidth problems, and social phenomena such as commitment loss). 

A reliable proof of the ideas can only be achieved in a real professional environ-
ment, in which true adoption and appreciation of functionalities should first be dem-
onstrated. It can be expected that real life issues not yet discussed here, such as pri-
vacy issues, will play an important role in these investigations. 
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Abstract. CSCW researchers have increasingly come to realize that the material 
work setting and its population of artefacts play a crucial part in coordination of 
distributed or co-located work. This paper uses the notion of physicality as a basis 
to understand cooperative work. Using examples from an ongoing fieldwork on 
cooperative design practices, it provides a conceptual understanding of physicality 
and shows that material settings and co-workers’ working practices play an 
important role in understanding the physicality of cooperative design. 

Keywords: Physicality, Cooperative Design, Artefacts, CSCW. 

1   Introduction 

Amongst its several definitions, the term physical1 means something that has 
“material existence” or a thing that is “perceivable through senses” and “subject to the 
laws of nature”. And the term physicality can be seen as an attribute or characteristic 
of a physical nature. The basis of human physicality (embodiment) allows us to see, 
talk and perform collaborative activities when we are in a shared physical space. In 
this case, human physicality makes the perceptual resources (visibility, sound, touch, 
smell or taste – any of the applicable) available to form the basis of human-to-human 
interaction. However, when humans do not share a common physical space, it is 
necessary to mediate these perceptual cues to establish human interaction via 
technological or other support. 

People use languages and other means when they are involved in group activities. 
In fact, from the historical and evolutionary point of view, languages have emerged 
from joint activities of individuals working in small groups [4]. However, Clark [3] 
suggests that in everyday group activities, our coordination acts are not limited only 
to the linguistic signals but also the 'material' signals – signals in which we 
communicate through material artefacts, locations and our embodied actions. Keeping 
Clark’s argument as a central theme, this paper explores the importance of physicality 
in the field of computer supported cooperative work (CSCW). Using examples from 
naturalistic cooperative design practices, we show that both the material settings and 
co-workers’ working practices play an important role in understanding physicality in 
work environments.  
                                                           
1 Merriam-Webster Collegiate Dictionary. HarperCollins; 11th Edition. 
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Despite its importance, the role of physicality in cooperative work has been under 
explored within the HCI and CSCW communities. Often, studies have shown a 
certain analytic primacy to the conversations people engage in and in particular the 
verbal language. Despite the rich ethnographic tradition within CSCW and interest in 
analyzing technology-in-practice [15], the ways in which material artefacts are used 
remains surprisingly neglected [26]. We believe that an analysis of seemingly simple 
activities with artefacts may have important implications for our understanding of 
collaborative work. This is even more relevant when teams are from domain such as 
design, engineering and architecture – teams that use a variety of tools, objects and 
artefacts to support their synchronized work. The skilled and timely use of these 
artefacts, their availability, exchange and manipulation, is an integral feature of the 
accomplishment of complex collaborative activities that these domains represent. 

The interest in understanding and designing for physicality has grown in recent 
time [5]. A handful of studies have indeed shown that material aspects play an 
important role in coordinating co-located and distributed activities. Several CSCW 
and design studies have approached materiality as supporting accountability [7], 
affordances [23] and coordination [10]. It has been shown that in architectural 
practices [22], medical hospitals [2] and meeting rooms [19], a considerable part of 
work is coordinated through material artefacts, like paper documents, notice boards, 
architecture plans and drawings. In a recent work, it is shown that materiality can play 
performative, persuasive and experiential roles in coordinating collaborative design 
work [13].  

Within the AMIDA project, we have been focusing on understanding the role of 
physicality in meeting practices [28] and designing new ways to support remote 
collaboration. In this paper, we aim to provide a conceptual understanding of 
physicality, showing how 1) the materiality of work settings and 2) co-workers’ 
working practices can contribute towards the collaboration of teams involved in co-
located design practices. We illustrate this, using examples from our ongoing 
fieldwork of naturalistic design practices. We believe that a thoughtful consideration 
of these two aspects can contribute to the design of new technological tools for 
collaborative work without impoverishing what individuals do in their day to day 
working lives. 

In the following sections we first describe the reason for our take on physicality. We 
then describe the conceptual understanding of physicality for supporting collaborative 
work. In the end we discuss the usefulness of the physicality approach. 

2   Why Turn to Physicality  

We describe several aspects that motivated us to look at physicality for understanding 
cooperative work of designers. 

Utilizing materiality. Materiality of artefacts has a wide range of physical properties 
such as, spatial (size, shape, proportion, location in space), material (weight, rigidity, 
plasticity), energy (temperature, moisture), texture (roughness or smoothness, details) 
as well as other dynamic properties [13]. The role of materiality in coordinating team 
work has been echoed by several researchers in HCI and CSCW [7, 10, 23]. Several 
field studies of collaborative work have shown that materiality expands communicative 
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and collaborative resources, e.g. the study of paper use in large organizations [23]. For 
example, Jaccuci and Wagner [12] show that in case of design practice different design 
materials and artefacts allow direct and bodily engagement and hence broaden 
communicative resources by evoking sensual experiences. Additionally, materiality of 
a physical object supports wider resources for actions compared to what current 
desktop-based applications support [9]. However, there is a lack of understanding 
about how to utilize material and physical aspects for design purposes within CSCW. 
Schmidt and Wagner [22] argue that conceptual frameworks of understanding contexts 
(such as distributed cognition and activity theory) do not adequately address the 
usefulness of materiality. For example, within the framework of Distributed Cognition 
(DCog), Hutchins [10] shows that information migrates from the minds of actors to 
artefacts and back to mind without any ‘change’, maintaining unity and integrity across 
several instances of physicality, minds and time. The DCog framework does not 
address how the materiality of artefacts may affect the affordances of the actors. (Read 
[22] for a discussion) 

The design domain. Several CSCW studies have focused on designing systems with 
a view to support the cooperative work practices of specialized knowledge workers 
like designers, architects, engineers and doctors [16, 17, 19, 22, 25, 26]. Because of 
the nature of design practices, the interest in physicality in design work is pretty 
obvious. Designers, whose intention is to produce tangible products, communicate 
through a varied set of design representations often involving different materials, 
modalities and scale. To an extent, the whole design practice progresses through the 
use and manipulations of these representations and iterative refinements of both the 
conceptual and physical designs of products to be designed. Jacucci and Wegner [12] 
look at the creative and experiential side of physicality. In their work on 
understanding the design practices of students, they suggest that physicality spurs 
designers’ thinking, helps them communicate ideas that would be difficult to 
communicate through words alone. Schön’s [20] work on the reflective practitioners 
also emphasizes the ‘conversational relationship’ of designers with the medium they 
are interacting with.  

Awareness and coordination. Understanding how material artefacts within a work 
environment are organized, configured, manipulated and handled could enhance the 
awareness of co-workers’ activities and coordination of work. Awareness has been an 
important issue in supporting cooperative work. Taking a phenomenological stance, 
Robertson [18] has shown that physicality sheds light on establishing an 
understanding of awareness as a continuous and lived phenomenon. She suggests that 
if the participants in a cooperative process can be aware of what other people are 
doing, or have done, then the agency for structuring interaction and cooperative 
processes in the workplace can be claimed and practiced by the people using the 
technology [17]. In the case of design practice, the arrangement or configuration of 
material artefacts used in design process provide some useful perceptual resources 
that could allow participants to anticipate and structure a set of action.  

Ubiquitous applications. Our particular interest in physicality is intended towards 
augmenting artefacts with computing capabilities taking into account co-workers  
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natural practices. We believe that in order to develop efficient and effective 
ubiquitous technologies [29] we need to have a wide range of understandings of the 
ways in which the mundane artefacts are used within the everyday practical design 
activities. A large part of the CSCW research has focused on the mediaspaces 
applications – supporting remote communication through audio-video links [1]. It has 
been argued that because of the impoverished understanding of ‘collaborative work’ 
[8, 21], researchers could not achieve efficient and seamless coordination between 
distributed teams. New approaches like tangible interfaces [27] have emerged within 
this theme but they are mainly for ‘one’ user and do not support much collaboration 
[9]. In some cases when these applications support collaboration, they are mainly for 
supporting the co-located activities, using, for example, tabletop interfaces [e.g. 24]. 
Ishii’s work on TeamWorkStations allows a shared drawing space for distant 
participants to coordinate their work [11]. However, the use of work practice studies 
to inform the design of ubiquitous applications is still lacking in the current research. 

3   Physicality and Cooperative Work 

Cooperative work involves supporting communication between two or more actors by 
establishing mutual understanding (“common ground”) about the subject of 
conversation [6]. This mutual or shared understanding is not a precondition of 
cooperative work but it is obtained and maintained only as a result of articulation 
efforts. The distributed activities of the actors in a cooperative situation are 
interdependent in the sense that they contribute to the overall process of a shared 
practice of work. In order to contribute purposefully to the cooperative effort, each 
actor needs access to information pertaining to the state of the work: what is the 
situation, what has happened, what is happening currently, what might happen, and so 
on. We consider successful coordination in co-located and distributed teams as the 
situation where all participants can monitor, notify, share, allocate, mesh, or 
interrelate each other’s distributed individual activities in an effective manner. As an 
example from a non-computing domain, Dix [6] discusses, in his framework of 
CSCW, how two actors trying to move a piano coordinate their activities. Even 
though the two actors cannot see each other very well the feedback that they receive 
from each other’s activities – mediated through the material properties of the piano – 
help them make sense of each other’s moving process. In the case of computer 
mediated communication the same process occurs. Actors who cannot see each other 
can be aware of each other’s actions as mediated in different ways. 

We discuss physicality at two levels: the materiality of the work setting and the 
social practices of the co-workers involved in the interaction. What seems to make an 
artefact meaningful to an actor is the interplay of its materiality and the practice 
within which the artefact is used or developed. Figure 1 provides our initial 
understanding of physicality as a lens to understand cooperative work. In order to 
support effective coordination (C), we need to understand both the materiality (A) of 
the overall work setting and the practice within which this materiality is utilized (B). 
Here (A) and (B) are mutually dependent: sometimes facilitating and sometimes 
constraining each other.  
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Fig. 1. A conceptual understanding of physicality for understanding cooperative work. The 
interplay between the materiality of the work setting and social practices of the co-workers 
could support coordination of work. 

In the following sub-sections, we will discuss issues related to the materiality of 
work environments and the social practices of co-workers and how both contribute 
towards the collaborative work. We also provide examples from our ongoing 
fieldwork of co-located design practices to support our discussion.  

3.1   Materiality of Work Setting 

Design practitioners use a plethora of material artefacts to support their work. In order 
to understand designers’ collaborative work practices one needs to take into account 
how these artefacts play a role in their work. As such, the use and manipulation of 
these artefacts is not a given, neither do these artefacts exist objectively in designers’ 
everyday practices, but they are constructed in and through the process of design. 
Additionally, the materiality of artefacts can be seen in two different ways: materiality 
as a tool to support work and, materiality as representations of work. Artefacts such as 
a drawing board, scale, pencil and others are used as tools to support designers’ work. 
Whereas artefacts such as a design sketch, clay or 3D model can be considered as 
representations of the design process. In the following, we provide several 
characteristics of materiality of a cooperative design setting, supported by some 
examples from our own fieldwork with designers. 

We use a specific case in our discussion, where student designers were involved in 
designing a health-care system for supporting everyday medical care of the elderly. 
The students developed a software interface of a television set-top box and a 
specialized remote control that can be used on a normal television set. We captured 
their complete design cycle and analyze the role of artefacts in the design process. 

Representation. Material artefacts often used and produced during design practices 
such as paper drawings, physical or graphical models can serve as representations of a 
cooperative work. In Bruno Latour’s [14] terms, these representations have the 
characteristics of immutability and mobility. I.e. these artefacts can work as a 
persistent form of information as well as a carrier for information that can be moved 
in or out of the work space in order to support efficient collaboration amongst  
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(a) (b) (c) 

Fig. 2. Examples of different levels of design representations: (a) Information architecture of the 
health-care system, (b) Detailed design of the remote control and (c) Final product 

different co-workers. For example, Sellen and Harper [23] have utilized the concept 
of affordances of papers. They showed that the physical properties of paper (being 
thin, light, porous, opaque, flexible, and so on) afford many different human actions, 
such as grasping, carrying, manipulating, folding, and in combination with a marking 
tool, writing on. Central to their notion of affordance is the materiality of artefacts. 
The immutability and mobility of artefacts, designed or used during a design process, 
allow co-workers to collaborate and coordinate work amongst themselves.  

From our fieldwork we observed several examples of design representations 
depicting different stages of design (figure 2). These representations, in the form of a 
design sketch or a detailed design, carry a great number of conventions, notations and 
layers that can be very useful when designers collaborate with each other and allow 
them to extract information they need. Designers can also extract the details of 
notation, format, and syntax underlying their form and use, such as the specific 
techniques involved in working with maps, charts or matrices. The important issue 
here is that the materiality of different design representations can afford and trigger 
different collaborative actions in the design team.  

Multi-modality. The multi-modality supported by material artefacts can provide a 
better understanding of a design practice as opposed to the sequential text or speech. 
Considering different stages of any design process, designers produce different 
models of the product they are trying to build. This could range from a conceptual 
stage in a sketch, to a card-board model, to a full prototype. Figure 3 shows some 
examples from our fieldwork that provides indication about different levels of multi-
modality of the design artefacts. As can be seen in the figure, the multi-modality of 
these artefacts involves two-dimensional hand-made drawing (3a), three-dimensional 
physical object (3b) and a software-based representation (3c). It is important to note 
that these variations influence the properties of a representation and suggest or enable 
different usages, interaction styles and variations in meaning, even when they 
represent the same object, idea or concept. Each of these models can be seen as 
having a specific ‘mode’ of expression, when put together these model form a multi-
modal representation of the design concept. The materiality of these artefacts connote  
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(a) (b) (c) 

Fig. 3. Examples of different design modalities: (a) A drawing of design scenario, (b) Physical 
remote control created in the studio and (c) Software interface of the final product 

a variety of qualities that are connected to the designers’ senses (vision, sound, smell 
or touch) and vary with parameters such as weight, thickness, transparency, and so on. 
It is this multi-modality that turns the materiality of an artefact into a source of 
multiple channels of interactions that could lead to rich experiences. 

Temporality. The temporality of different material artefacts could help establishing 
an understanding of the process that is used in the cooperative design work. Figure 4 
shows three different stages of the design of the remote control used to operate the 
set-top box of the elderly-care system. Because of the iterative nature of a design 
process, temporality becomes especially relevant since there will be a need to 
understand, explain and mediate the design activities involved in it. The temporal 
dimension of the materiality of artefacts points to different time frames as well.  

Additionally, designers produce different models and representations throughout the 
different stages of design such as, text, diagrams, comics, and video clips to sketch 
models, virtual models, and physical prototypes. The materiality of these represent-
tational artefacts could provide a great deal of information about the way they are 
created, used and manipulated, conveying the process that is applied in designing.  
Importantly, the temporality serves not only as indicative of different stages of a design 
process, it also serves for accountability (planning, managing, budgeting, and so on) of 
the design work. A thorough insight into different artefacts produced during a design 
process could lead to some indication about change of plan, change of methods or any 
other deviations during the cooperative work. Especially in the collaborative design 
processes, these artefacts provide cues and signals for the co-workers to appreciate the  
 

       

Fig. 4. Different stages of the design of remote control 
 



332 D. Vyas, D. Heylen, and A. Nijholt 

intention of colleagues and the challenges and problems that are faced by the others. 
The temporality is indicative of the design-in-progress which is of a great importance 
in cooperative work. 

Spatiality. The use and design of artefacts is often connected to their specific 
physical form and positioning in an environment. In addition the way a set of artefacts 
is organized could provide useful information about their relevance in the design 
process. Spatiality is not only a practical property of an artefact but it supports 
interactions and communications amongst several co-workers and is often used as a 
thinking tool. For example, in a brain storming session (normally, early in the design 
process) designers collect their ideas in sticky-notes and position them and group 
them in a certain way that allows co-workers to articulate the current understanding of 
a design project and generate new ideas for design. In this case, the spatiality of 
material artefacts such as sticky notes plays a role in explaining the order, relationship 
and overview of different activities of designers. In addition, the spatiality of artefacts 
also serves as a source of inspiration, especially in the case of designers.  

3.2   Social Practices 

One of the important issues to take into account when understanding physicality is 
that the role of physicality is not limited to providing the external tool support 
(specialized tools used to design products) or the material itself that is used for 
designing the product, but physicality is both what is produced and the process that is 
used in producing it.  

In addition to the material aspects within the work environment, the social practices 
that are applied to support cooperative design is also an important aspect to understand 
physicality of design work. These two aspects of physicality: materiality of work 
environments and co-workers’ social practices are dependent on each other and co-
evolve over time. This has also been proven by the work of Sellen and Harper [23] on 
understanding the use of paper documents in organizations. They showed that some 
specific use of papers is not replaceable by other means (e.g. organizational policies 
and changes), as papers have become so integral to an organization’s work practices. 

Our fieldwork of design practices was limited to co-located design meetings. 
Figure 5 shows two different sessions of design meetings. In co-located design  
 

       

Fig. 5. Two different sessions of design meetings 
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(a) (b) 

Fig. 6. Brainstorming processes used in the design team at different stages of their design 
project. (a) At concept development stage and (b) During interface design stage. 

environment the perceptual resources (visibility, sound, touch, smell or taste – any of 
the applicable) are readily available. During design processes, designers accomplish 
activities and tasks utilizing not only their internal cognitive processes but via the 
combination of different cooperative ‘embodied’ actions [17]. The public availability 
of embodied actions of one designer enables others to organize their own actions 
accordingly, to support a cooperative activity in design. Cooperation is achieved by 
the mutual perception of these actions as the basis for the ongoing creation of shared 
meaning. Designers align and integrate their activities with those of their colleagues 
in a seamless manner by asking, suggesting, requesting, ordering or reminding others 
of some specific activities. From our fieldwork, we found several examples (figure 6) 
of designers’ brainstorming process that provide indications about how designers 
collected ideas amongst themselves at different stages of design. Figure 6b is an 
indication of different interface design mockups that these designers considered and 
discussed during the process. 

Public availability, central to many CSCW studies [7, 18, 21], of actions and 
material artefacts allow co-workers to appropriate their own actions. In other words, 
while carrying out the individual part of a cooperative work, actors typically modulate 
their own actions such that their colleagues are provided with cues and other kinds of 
perceptual resources relevant to their monitoring these activities. This calls for a 
consideration not just of human perception but also an understanding of how human 
perception relates to the way in which the significance of artefacts and actions is 
negotiated and conveyed in practice.  

The communicative function of actions and artefacts is of particular importance here, 
as it goes beyond perceptions. People can only shape their own actions so that they are 
meaningful in relation to those of others if the ongoing activity is publicly available to 
each of the participants; i.e. if they are aware of each other. Moreover, it is important to 
note that the significance of the artefacts and actions is negotiated in different ways by 
different people within the same workplace. As Schmidt [21] suggests that ‘awareness’ 
of x may or may not entail the same practices as ‘awareness’ of y. 
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4   Discussion: Physicality – Beyond Communication 

What has been presented here is our conceptual understanding of physicality that is 
used as a lens to view cooperative work. However, there are some important issues 
that could be useful for consideration when designing new technologies to support 
cooperative work. In this section we discuss the benefits of taking a physicality 
approach to understand cooperative work. 

In cooperative work, establishing a shared perspective or common ground between 
the co-workers is the most important aspect. A recent review [31] shows that 
mediating visual information about work related artefacts is more efficient to support 
coordination than information about the participants involved in a cooperative work. 
This means that the artefacts – used or designed during cooperative work are a source 
of supporting and mediating interactions amongst the distributed or co-located 
workers. The physicality of these artefacts could support rich understandings of 
cooperation between co-workers. 

Directness. The physicality of artefacts allows direct engagement with the artefacts 
and provides direct feedback, which in turn leads to shared resources for coordination 
and expression. Since the designers are in direct touch with their artefacts, the 
engaging nature of these artefacts can support better ways of collaboration. The issue 
of directness has been utilized by the research theme of Tangible Interaction [27]. 
Hornecker [9] has utilized this aspect and provided several guidelines to design new 
technology for supporting collaborative work. For example, she suggests utilizing 
physical constraints to facilitate the distribution of work and help co-work in 
coordinating each other’s actions.  

Affordance. The physicality of a material artefact allows a rich set of possibilities of 
actions. For example, Sellen and Harper [23] show that paper documents, because of 
their material properties, allow an array of collaborative practices amongst co-
workers, such as: providing a flexible medium for the display of real-time 
information, a mechanism for team coordination, providing support for face-to-face 
interactions, and so on. Designers can think about new systems that allow multiple 
points of interaction, providing simultaneous access or establishing access control 
within the design of these systems.  

Configurability. The spatial flexibility supported by physicality of an artefact allows 
co-workers to configure the artefacts and importantly the inherent signals that are 
conveyed by the positioning of these artefacts. For example, in a meeting room, 
papers can be positioned in such a way that can make them ‘public’ or ‘private’. 
Additionally, the spatiality of material artefacts has a specific design narrative. The 
way different artefacts are positioned, along with their multi-modal expressions and 
behaviors could inform us about the design process and activities that are applied to it. 

Experiential aspects. Again, the multi-modality and ability to support and convey 
information through all senses, makes the use of an artefact experientially rich. In the 
case of joint design activities, co-workers don’t just interact with these artefacts when 
they are designing, they actually get the feeling and experience each other’s activities 
through these artefacts. This really helps in the process of collaborative design in 
which the designers are always in search of new, creative and inspirational ideas. The 
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communication channels that are established by these multi-modal artefacts go 
beyond facilitating and satisfying the basic task-oriented activities.  

5   Conclusions 

We highlight that the issues that are presented here are conceptual and are used here 
mainly to generate awareness about the issues related to physicality. However, these 
issues adequately point to the importance of physicality in understanding cooperative 
work – a perspective different from other face-to-face or linguistically oriented 
approaches. We believe that in the future a take on physicality is inevitable as the 
ubiquitous technologies are emerging. At the current stage, a thorough insight into the 
notion of physicality could help us foresee the future trends of ubiquitous 
technologies. 

What has been discussed in this paper, in a nutshell, shows that in order to support 
efficient coordination amongst different co-workers we have to understand the real – 
material world and the world that we have created with our social and cultural 
practices. They are both the product as well as the mediator of each other. These 
aspects related to physicality are important to understand how co-workers make sense 
of each other’s collaborative activities. 

Overall, physicality is an important notion to understand cooperative design 
practices. It captures several important aspects that may not be easily extracted 
through other means, such as speech. 
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Abstract. A test bed has been developed in which participants are tasked to work 
in simulated, scenario based, projects in which face-to-face and remote meetings 
of about 45 minutes have to be held. Measures on performance, team factors and 
remote aspects are automatically collected with electronic questionnaires. The 
sensitivity and reliability of these questionnaires are positively evaluated. The test 
bed is now ready to be used for evaluating how well meeting assistants support 
collocated meetings and videoconferencing. 

Keywords: remote meetings, meeting assistant, audio-video capture, evaluation, 
questionnaires. 

1   Introduction 

This paper reports on work carried out in the context of the AMIDA project, the 
successor of AMI (IST FP6-0033812, http://www.amiproject.org). AMI (Augmenting 
Multi-party Interaction) was aimed at enhancing a meeting, or series of meetings, by 
developing tools for capturing, processing, searching and browsing multi-modal 
meeting information. The aim of AMIDA (AMI – Distant Access) is to incorporate 
this technology into a meeting assistant that supports not only at the content level 
(e.g. capturing, searching and browsing), but also at the process level (e.g., meeting 
guidance) and at the communication level (e.g., enhancing remote participation).   

To collect data for learning to understand what is going on in a (remote) meeting 
(i.e., for developing machine learning algorithms that can recognize meeting 
phenomena) and for determining the effect of such a meeting assistant (i.e., to know 
whether it really leads to better collaboration, efficiency and outcomes), we developed 
a meeting assistant test bed. The test bed allows us to run both face to face and remote 
meetings in a controlled manner, with participants using the available meeting 
assistant technologies, and to collect various measures. This paper reports on the 
development of this test bed and the evaluation of it on a large set of participants. 

Independent of ongoing multimodal technology developments in general and user 
requirements studies for meeting assistants in particular (such as [1]), we have 
identified a number of generic functionalities that our meeting assistant test bed 
should be able to evaluate. Figure 1 illustrates these functionalities. It shows firstly  
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Fig. 1. Potential Meeting Assistant functionalities, associated to the meeting cycle 

that the functionalities are related to a meeting cycle, consisting not only of a meeting 
itself but also of documenting the meeting outcome, of acting upon the result of that 
meeting (e.g., to carry out the actions that have been agreed on), and of preparing a 
next meeting, and so on. AMI was focused on supporting documenting (e.g. 
Multimodal Registration, Automatic Transcription, Summarization), browsing and 
preparation (e.g., speeding up meeting play-back). AMIDA focuses firstly on support 
during the meeting, such as with goal orientation (e.g., agenda management and 
leadership support), and compensating remoteness (e.g., to handle engagement and 
floor control problems and Floor control). Secondly, it will focus on workload 
balancing: how to tune one’s meetings with all other work that has to be done in an 
organization. This aspect has to do with monitoring availability for interaction and 
ways to alert or contact people to start an interaction. Thirdly, AMIDA will support a 
specific type of meeting preparation which we call “Catching up”: when you are late 
or asked to join a meeting only for a specific part, and need to be pre-briefed.  The 
test bed should include all those meeting cycle situations. 

The meeting assistant test bed builds on earlier work [2]. This paper describes the 
adaptations to that work to enable the evaluation of all functionalities presented in 
Figure 1, and not only meeting browsing (such as described in [3]). The test bed 
follows an approach in which participants are placed in a simulated organization and 
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are tasked to carry out a particular design project, while supported or not with the 
particular meeting functionality to be evaluated. During their work, at preplanned 
points in time, they receive by e-mail information about their job, as well as electronic 
questionnaires for collecting various evaluation measures. The scenario is described 
in more detail in section 2.4. 

In the remainder of this paper we will describe the evaluation method, present the 
results of the evaluation, and discuss our findings. 

2   Method 

This section describes how the test bed was evaluated.  The participants that carried 
out the design projects are described, as well as the apparatus that was used to run and 
control the scenario, and how the meetings,  including remote conferencing, was 
captured. Further, an overview is provided of the measures that were taken and a 
more detailed explanation of the procedure. 

2.1   Participants 

Data from 12 project teams consisting of 4 participants were collected in the 
instrumented meeting room at Edinburgh. Most of the 36 subjects were undergraduate 
students taken from the Edinburgh University student populous. They were paid £20  
for approximately 4 hours of work. 

2.2   Apparatus 

The meetings were conducted in the Instrumented Meeting Room at the University of 
Edinburgh.  The equipment used for the collection of the data is an extension to that 
used in the collection of the original AMI corpus, as documented in [5]. Some 
modifications have been made to permit remote participation and the capture of 
participant’s use of the meeting assistant tools. 

A second, smaller office for use by the remote participant has been instrumented in 
addition to the meeting room. This office contains a camera giving a close up view of 
the participant, an 8 element microphone array, and a lapel and headset microphone 
for the remote participant. These ‘high quality’ capture channels are fully 
synchronized to the audio and video recordings from the meeting room. The video 
conference system (Figure 1), which connects the remote participant room to the 
meeting room, uses a Visual Nexus multipoint control unit and EConf software 
endpoints from France Telecom. The conference is run at 4cif resolution, essentially 
the same as the resolution used for the ‘high quality’ video capture (PAL) which 
allows algorithms developed for the high quality signals to be used on the conference 
recordings. The conference is captured by means of a Codian IPVCR, which 
independently captures the streams from each endpoint. The use of software based 
endpoints allows the time code used for synchronization of the high quality video to 
be inserted into the conference video streams before they are sent, allowing the effect 
of delays in the videoconference on participant behavior to be studied. 

In order for the participants to share presentations during the meetings, a simple 
remote collaboration system, based on VNC [6], has been implemented (Figure 2).  
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Fig. 2. Video Conferencing System 

 

Fig. 3. Remote Collaboration System 

The system consists of a central VNC server attached to the beamer in the meeting 
room, which the participants connect to from VNC clients on their personal laptops. 
PowerPoint presentations are transferred to the server prior to the meetings and shown 
on the VNC server. Participants in the meeting room see the presentation on the 
projector screen while the remote participant can see the presentation via the VNC 
client on their laptop.  

To allow the observation of the participants’ use of the various meeting assistant 
tools, screen capture of their laptops is performed. While dedicated screen capture 
software which would run on the machines is available, it was found that the software 
slowed the machines unacceptably when used alongside the meeting browser software 
and led to unreliable capture. Instead a hardware based solution has been used. A 
‘scan converter’ converts the VGA output of the laptops to a PAL video signal, and 
this is subsequently recorded as an MPEG video, for later observation and annotation. 



342 W. Post  and M. Lincoln 

The scenario itself is fully automated – the timing is controlled by a simple crontab 
script which lists the times and contents of the emails which are sent to the participants.  

2.3   Measures 

The scenario also specifies the timings of e-mails for automatic measurement by 
means of electronic questionnaires. They are sent out before and/or after each meeting 
(see Table 2 for the details). Measures have been taken in the categories Performance, 
Team Factors and Remote Aspects. Performance and team factors are refined 
measurements from the questionnaires described in [2]. Except for mental effort (for 
which a validated 150pt rating scale was used), all measures has been taken by 
questionnaires (with for each factor 4 items, measured on a 7pt Likert scale). The 
remote aspects questionnaire has been developed to measure possible shortcomings in 
collaboration when one or more participants meet though videoconferencing. It also 
uses 4 items for each factor, measured on a 7pt Likert scale. The first three factors 
(commitment, social loafing and paying attention) are aimed at measuring the level of 
engagement. The latter two measure how the fluency and clarity of communication is 
perceived. Table 1 shows an overview and some example items. 

Table 1. Overview of the measures, taken by questionnaires (except for Mental Effort). For 
each measure, one of the four items is provided as an example. 

Example questions 
Performance 
Mental effort Validated 150 pt rating scale 
Info processing We shared the necessary information well. 
Proc. satisfaction I am satisfied with the process by which the group made its decision.  
Work pace I had too much work to do. 
Team efficacy On my own I would have never been able to find such a good solution  
Team efficiency The meetings could have been done in less time. 
Team satisfaction I am satisfied with the way we worked together 
Outcome satisfac. In all, I am satisfied with the solution for the design. 
Team factors 
Leadership The meeting was well-run. 
Dominance Dominance rating (1-7) for each participant.  
Cohesiveness I find the members of the group pleasant to be with. 
Communication I had difficulty with understanding my coworkers. 
Support. behavior We corrected each others mistakes. 
Remote aspects 
Commitment I feel jointly responsible for the project outcome. 
Social loafing It appears to me that some team members add more than other.  
Paying attention Not every team member pays full attention. 
Address./ turn tk. I can clearly see when to interrupt a fellow team member.  
Clear Communic. I can recognize non-verbal signals easily 

 

2.4   Procedure 

In a scenario that has been developed to control this evaluation process, four 
participants acting as employees of a consumer electronics company, join a project to  
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Table 2. Mean values for 12 project teams at various project stages (carried out individually, 
face-to-face or partially remote), significant differences between stages (p = ), and questionnaire 
reliability results (reliability coefficients α 1,2 and 3, for subsequent measurements). N R: not 
reliable. 1N=6 instead of N=12. *statistical significant at 0.05 level. 

Project stages Sign. Reliability
 At 

start
Pre-
pare

Kick
-off 

Pre-
pare

Conc.
design

Pre-
pare 

Detail. 
design 

 P=  1  2  3

Face-face:remote  Ind. 4:0 Ind. 3:1 Ind/1:1 3:0/3:1     
Performance            
Mental effort 41 56 49 52 54 47 56 .043*    
Info processing  4.941  5.991  6.071 .006* .82 .85
Proc. satisfaction  5.151  5.931  5.861 .041* .87 .91
Work pace      4.08  .81   
Team efficacy       5.52  .73   
Team efficiency        n r   
Team satisfaction      5.64  .76   
Outcome satisfac.      5.60  .90   
Team factors            
Leadership  4.841  5.821  5.801 .007* .83 .91
Dominance  3.94  4.41  4.48 .001*    
Cohesiveness  5.691  6.071  6.151 .011* .82 .75
Communication      5.72  .70   
Support. behavior      5.84  .83   
Remote aspects            
Commitment  5.57  5.90  5.95 .001* .89 .96 .94
Social loafing  4.50  3.56  3.51 .002* .78 .37 .87
Paying attention  5.36  5.88  5.57 .001* .66 .87 .82
Address./ turn tk.  5.22  5.36  5.33 .230   .74 .66 .77
Clear Communic.   5.21  5.40  5.55 .058 .87 .67 .82  

 
design an innovative TV remote control. They are told that to shorten the time-to-
market, and to increase the possibility of having a better quality product, a number of 
design teams are going to work in parallel, in a competitive way. The best resulting 
design will be selected for production. The participants are assigned a particular role 
within the team: project manager (PM), marketing expert (MA), user interface 
designer (UD) or industrial designer (ID). The overall project method that has to be 
followed has four phases: project start-up, functional design, conceptual design, and 
detailed design. Each phase is followed by a meeting.   

In this adapted version for meeting assistant evaluation, the participants are asked 
to prepare and carry out the last two phases, with one participant working remotely. In 
order to do this they are provided with materials from the first two project phases 
which have been completed by a different design team. The materials include email 
correspondence between the previous team members, word and power-point 
documents they produced, and recordings of their meetings which are made available 
via a meeting browser. Figure 4 illustrates the project method. 

To understand what the project is about, in addition to the final two phases of the 
design method, the participants are first asked by e-mail to prepare and carry out an 
initial meeting prior to the conceptual design phase. Preparing for this additional  
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Fig. 4. Schematic overview of the scenario 

meeting consists of getting a personal gist of the project, using the meeting browser 
and other information from the previous team for information and guidance.  

During their first meeting their task is getting a shared gist: discussing what the 
project is about and collectively formulating the objective of the project. After this 
meeting, the User Interface Designer moves to a remote location (the instrumented 
‘remote participants room’ detailed in section 2.2) where he stays for the remainder of 
the project, and all the participants individually prepare for the second meeting on 
conceptual design. In the second meeting, the participants present the results of their 
individual work (the UD joining by video conference) and collectively come to a 
conceptual design.  

The participants then prepare for the final project meeting, the ‘detailed design’ 
phase. For the User Interface Designer and Industrial Designer, preparation consists 
of holding a videoconference in which they make a mock-up of the remote control 
using modeling clay provided to the Industrial Designer. Because they are remote, the 
User Interface Designer must communicate any ideas about the design to the 
Industrial designer using the videoconference, so that they may be included in the 
clay mock-up. The other participants prepare the last meeting individually.  

Immediately prior to the final meeting, the UD receives an email instructing him 
not to participate in the meeting. He briefly calls the other participants to explain that 
he is not permitted to participate, and then closes the connection to the meeting room. 
To manipulate his availability, the UD is then occupied with another task - to define a  
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usability program.  While he is working on this task he can indicate his availability 
(e.g. using the ‘presence’ system integrated in the video conference system, or later 
on through an AMIDA functionality). The other participants present their individual 
work and the clay prototype is presented and evaluated. The scenario is designed such 
that the remote control cannot be made within the budget constraints initially 
supplied, however, at a certain point during the final meeting the participants in the 
meeting room receive new information. They are told that a new, cheap, interface 
component has been developed which may solve the budget issue, however, only the 
UD has specific information required about the device. The UD must therefore be 
consulted before it can be used, requiring them to asses his availability and call him 
using the video conference for more information. Finally, after the meeting, the PM 
will detail the finished remote control in the Product Specification Document. 

The scenario allows the integration and evaluation of a number of the meeting 
assistant technologies outlined in section 1: New meeting browsers may be evaluated 
during preparation for the first meeting; Technologies for improving goal orientation 
may be useful during meeting 1 while the participants familiarize themselves with the 
project; engagement enhancement technologies can be evaluated while the 
participants use the video conference; The UD could use software to indicate his 
availability when he has to withdraw from the final meeting; The UD could use 
meeting catch up software to quickly find out what has been going on in the final 
meeting when he is consulted about the new interface component.  

3   Results 

From a technically viewpoint, the scenario performed well. Once the participants 
were instructed on the use of the video conference and remote collaboration systems, 
they had little difficulty in using them as required.  

The existing questionnaires on performance and team factors that were refined and 
the questionnaire on remote aspects that have been newly developed have been tested 
on reliability. Table 1 shows the measured values and the reliability of the instrument 
on the individual factors. The values are collected after the different stages in the 
scenario (i.e., at the start, and after preparing and after carrying out the kick-off 
meeting, the conceptual design meeting and the detailed design meeting). Some are 
measured only once, and others repeatedly (for which more alpha’s are shown). The 
setting changes during the scenario. Preparation is mostly done individually (except 
the preparation of the detailed design meeting, which is done together by the UID and 
the ID; the PM and the ME prepare individually. This is indicated by “Ind/1:1”). The 
Kick-off meeting is done all together (“4:4”), the Conceptual Design meeting with 
one remote participant (“3:1”) and the detailed design meeting initially with three, 
face-to-face, but halfway with a consultation of the remote participant (“3:0/3:1). 

Apart from team efficiency, all appeared to be reliable: all reliability coefficients 
(alpha’s) are at least .70. Further, for those factors that were repeatedly measured, the 
instrument was able to show significant differences between the project stages (i.e., 
the three meetings), except for the factors addressing / turn taking and clear 
communication. From this, we can expect most of the instrument is able to detect 
differences within the stages as well, when we are comparing meetings assistant 
variants in the future.  
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Fig. 5. An interaction effect of the factors role and meeting on dominance 

The data allows more detailed analysis, as is shown by the factor dominance. We 
related dominance not only to project stage but also to the particular role (PM, ID, UD 
and ME). As shown in Table 1, a significant difference on dominance between the 
three meetings was found (F(2,22)=9.831; p .001). Not shown in the table is a 
significant difference on dominance between the four roles (F(3,33)=5.862; p .003).  
Moreover, there happens to be an interesting interaction effect between the factors 
role and meeting: (F(6,66)=5.072; p .000). Figure 5 shows that particular roles tend to 
be more dominant than others (i.e., the PM). It also shows that for each role, 
dominance increases during the project, except for the UD, whose dominance 
decreases during the project. Remember that the UD starts face-to-face in the first 
meeting, next meets remotely, and then doesn’t share the third meeting, until (s)he is 
consulted half way that last meeting. Working at a distance seems to have a clear 
effect, but such a conclusion may not be drawn directly, since the tasks of each 
participant are changing during the project too. The value of this approach arises 
when we compare the project meetings in which the participants are or are not 
supported by meeting assistants that, for example, can help with goal direction (e.g., 
based on dominance indicators, influence the meeting thought explicit floor control), 
or may be able to increase the level of engagement (e.g., by providing the remote 
participant information on the focus of attention, which is often difficult to obtain 
from a remote location). 

4   Discussion 

The main goal of this work is to be able to systematic evaluate meeting assistants that 
support meetings on the aspects of goal orientation, catching up meetings, engagement 
enhancement and workload balancing. Building on previous work, we extended our 
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previous developed test bed for face-to-face meetings, in particular meant for meeting 
browser evaluation. We are now able to evaluate a wide range of meeting assistants 
that support not only face-to-face but also remote meetings. 

For measuring the level of engagement, we developed questions on commitment, 
social loafing and paying attention. There are more options to define engagement. 
Curtlan and Pentland, for example, successfully operationalized engagement as the 
influence that individual turn-taking patters have on one another [7]. In our future 
work, we will try to relate these two objective and subjective measures.  

One of our measures is about addressing and turn taking. Although this part of the 
questionnaire was found to be reliable, it didn’t measure any difference between face-
to-face and remote meetings, which are expected to exist. A possible explanation is 
that people are not able to perceive these subtle cues consciously to be able to answers 
questions about it. More research needs to be done on this aspect.  

Further research will also include the relation between engagement and team factors 
such as dominance and supporting behavior, and also between engagement and 
meeting outcome: can too much engagement become unproductive? Answers to these 
questions are also useful for the development of other meeting assistants such as for 
goal orientation. Can engagement and dominance be actively balanced? Of course, 
once the relevance of these features have been demonstrated, work needs to be done to 
automatically detect them. Researchers in this area are invited to make use of our 
captured material and collected data, either to train their algorithms or to test them out. 

A final remark on our approach. We let participants work with (or without) 
meeting assistants within a simulated, but quite realistic, project in which several 
interrelated meetings needs to be prepared and carried out. During their work, we took 
various measures on performance, team factors and remote aspects. Our approach is 
costly and labor intensive. For each observation session, multiple participants have to 
work for four hours, and to statistically compare meeting agents, many sessions are 
required, with, as a heuristic, a minimum amount of 5 to 6 and a preferred amount of 
10 to 12 observation sessions per condition. There are less time-consuming ways to 
evaluate group support systems, such as expert review, collaboration usability 
analysis [7], Interaction Process Analysis [8], and relating performance to an expert 
defined gold standard [9].  Less expensive is also an evaluation at the individual level 
[10]. However, we think that user-centered-designed meeting assistants can best be 
evaluated  through experimentally controlled collective user experience. 
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Abstract. In this work we describe a large-scale extrinsic evaluation of
automatic speech summarization technologies for meeting speech. The
particular task is a decision audit, wherein a user must satisfy a complex
information need, navigating several meetings in order to gain an under-
standing of how and why a given decision was made. We compare the
usefulness of extractive and abstractive technologies in satisfying this
information need, and assess the impact of automatic speech recogni-
tion (ASR) errors on user performance. We employ several evaluation
methods for participant performance, including post-questionnaire data,
human subjective and objective judgments, and an analysis of partici-
pant browsing behaviour.

1 Introduction

In the field of automatic summarization, machine summaries are often evaluated
intrinsically, i. e., according to how well their information content matches the
information content of multiple reference summaries. A more comprehensive and
reliable evaluation of the quality of a given summary, however, is the degree to
which it aids a real-world extrinsic task: an indication not just of how informative
the summary is, but how useful it is in addressing a real information need. While
intrinsic evaluation metrics are indispensable for development purposes and can
be easily replicated, they ideally need to be chosen based on whether or not
they are good predictors for extrinsic usefulness, e.g. whether they correlate to
a measure of real-world usefulness.

We therefore design an extrinsic task that models a real-world information
need, create multiple experimental conditions and enlist subjects to participate
in the task. The chosen task is a decision audit, wherein a user must review
previously held meetings in order to determine how a given decision was reached.
This involves the user determining what the final decision was, which alternatives
had previously been proposed, and what the arguments for and against the
various proposals were. The reason this task was chosen is that it represents one
of the key applications for analyzing multimodal interactions - that of aiding
corporate memory, the storage and management of a organization’s knowledge,
transactions, decisions, and plans. A organization may find itself in the position

A. Popescu-Belis and R. Stiefelhagen (Eds.): MLMI 2008, LNCS 5237, pp. 349–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



350 G. Murray et al.

of needing to review or explain how it came to a particular position or why it
took a certain course of action. We hypothesize that this task will be made much
more efficient when meetings are archived and summarized.

The decision audit represents a complex information need that cannot be sat-
isfied with a simple one-sentence answer. Relevant information will be spread
throughout several meetings and may appear at multiple points in a single dis-
cussion thread. Because the decision audit does not only involve knowing what
decision was made but also determining why the decision was made, the per-
son conducting the audit will need to understand the evolution of the meeting
participants’ thinking and the range of factors that led to the ultimate decision.
Because the person conducting the decision audit does not know which meetings
are relevant to the given topic, there is an inherent relevance assessment task
built into this overall task. As time is limited, they cannot hope to scan the
meetings in their entirety and so must focus on which meetings and meeting
sections seem most promising.

2 Related Extrinsic Evaluation Work

This section describes previous extrinsic evaluations relating either to summa-
rization or to the browsing of multi-party interactions. We then describe how
our decision audit browsers fit into a typology of multi-media interfaces.

2.1 Previous Work

In the field of text summarization, a commonly used extrinsic evaluation has
been the relevance assessment task [1]. In such a task, a user is presented with a
description of a topic or event and then must decide whether a given document
(e.g. a summary or a full-text) is relevant to that topic or event. Such schemes
have been used for a number of years and on a variety of projects [2, 3, 4]. Due
to problems of low inter-annotator agreement on such ratings, Dorr et. al [5]
proposed a new evaluation scheme that compares the relevance judgment of an
annotator given a full text with that same annotator given a condensed text.

Another type of extrinsic evaluation for summarization is the reading compre-
hension task [1, 6, 7]. In such an evaluation, a user is given either a full source
or a summary text and is then given a multiple-choice test relating to the full
source information. A system can then calculate how well they perform on the
test given the condition. This evaluation framework relies on the idea that truly
informative summaries should be able to act as substitutes for the full source.

In the speech domain, there have been several large extrinsic IR evaluations in
the past few years, though not necessarily designed with summarization in mind.
Wellner et. al [8] introduced the Browser Evaluation Test (BET), in which ob-
servations of interest are collected for each meeting, e.g. the observation “Susan
says the footstool is expensive.” Each observation is presented as both a positive
and negative statement and the user must decide which statement is correct by
browsing the meetings and finding the correct answer. It is clear that such a set-
up could be used to evaluate summaries and to compare summaries with other
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information sources. We choose not to use this evaluation paradigm, however,
because the observations of interest tend to be skewed towards a keyword search
approach, where it would always be simpler just to search for a word such as
“footstool” rather than read a summary.

The Task-Based Evaluation (TBE) [9] evaluates multiple browser conditions
containing various information sources relating to a series of meetings. Partici-
pants are brought in four at a time and are told that they are replacing a previous
group and must finish that group’s work. In essence, the evaluation involves re-
running the final meetings of the series with new participants. The participants
are given information related to the previous group’s initial meetings and must
finalize the previous group’s decisions as best as possible given what they know.
There are several reasons we have chosen not to use the TBE for this summa-
rization evaluation. One is that the TBE relies primarily on post-questionnaire
answers for evaluation. While we do incorporate post-questionnaires in our eval-
uation, we are also very interested in the objective participant performance in
the task and browsing behaviour during the task. Two, the TBE is more costly
to run than our decision audit task, as it requires having groups of four people
spend an afternoon reviewing previous meetings and conducting their own meet-
ings, which are also recorded, whereas the decision audit is an individual task.

The SCANMail browser [10, 11] is an interface for managing and browsing
voicemail messages, with multi-media components such as audio, ASR tran-
scripts, audio-based paragraphs, and extracted names and phone numbers. To
evaluate the browser and its components, the authors compared the SCANMail
browser to a state-of-the-art voicemail system on four key tasks: scanning and
searching messages, extracting information from messages, tracking the status
of messages (e.g. whether or not a message has been dealt with), and archiving
messages. Both in a think-aloud laboratory study and a larger field study, users
found the SCANMail system outperformed the comparison system for these ex-
trinsic tasks. The field study in particular yielded several interesting findings. In
24% of the times that users viewed a voicemail transcript with the SCANMail
system, they did not resort to playing the audio. This testifies to the fact that the
transcript and extracted information can, to some degree, act as substitutes for
the signal, which user comments also back up. On occasions when users did play
the audio, 57% of the time they did not play the entire audio. Most interestingly,
57% of the audio play operations resulted from clicking within the transcript.
The study also found that users were able to understand the transcripts even
with recognition errors, partly by having prior context for many of the messages.

Whittaker et. al [12] described a task-oriented evaluation of a browser for
navigating meeting interactions. The browser contains a manual transcript, a
visualization of speaker activity, audio and video streams with play, pause and
stop commands, and artefacts such as slides and whiteboard events (the slides,
but not the whiteboard events, are indices into the meeting record). Users
were given two sets of questions to answer, the first set consisting of general
“gist” question about the meeting, and the second set comprised of questions
about specific facts within the meeting. There were 10 questions in total to be
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answered. User responses were subsequently scored on correctness compared with
model answers. While general performance was not high, users found it much
easier to answer specific questions than “gist” questions using this browser setup.
This has special relevance for our work, as certain types of information needs
might be easily satisfied without recourse to derived data such as summaries or
topic segments, but getting the general gist of the meeting seems to be much
more difficult. Very interestingly, users often felt that they had performed much
better than they actually had. Specifically, users seemed to be unaware that
they had missed relevant or vital information and felt that they had provided
comprehensive answers. Across the board, participants focused on reading the
transcript rather than beginning with the audio and video records directly.

2.2 Multimodal Browser Types

Tucker and Whittaker [13] provided an overview of the mechanisms available
for browsing multimodal meetings. They established a four-way browser clas-
sification: audio-based browsers, video-based browsers, artefact-based browsers,
and derived data browsers. In light of this classification scheme, our decision
audit browsers are video browsers incorporating derived data forms. Although
other incarnations of our browsers contain meeting artefacts such as slides, we
simplify the browsers as much as possible for this task by putting the focus
on derived data forms and their usefulness for browsing the meeting records.
Each version of the experimental browser is built using JFerret [14], an easily
modifiable multi-media browser framework1.

3 Task Overview

The experiment consists of five different conditions, described below. We re-
cruited 10 subjects per condition for a total of 50 subjects, all native speakers of
English. For each condition, 6 participants were run in Edinburgh and 4 were run
at Saarbrücken, the experimental setups for the two locations being as identical
as possible.

As our underlying data we chose four meetings from the AMI Meeting Corpus
[15]. The meeting series ES2008 was selected because the participant group in
that series worked well together on the task of designing a new remote control.
The group took the task seriously and exhibited deliberate and careful decision-
making processes in each meeting and across the meeting series as a whole.

The basic task for the participants was to write a summary of the decision
making process in the meetings for separating often and rarely used functions
of the remote control. This particular information need was chosen because the
relevant discussion manifested itself throughout the 4 meetings, and the group
went through several possibilities before designing an eventual solution to this
portion of the design problem. A participant in the decision audit task therefore

1 http://www.idiap.ch/mmm/tools/jferret
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would have to consult each meeting to be able to retrieve the full answer to the
task’s information need.

Each participant in our task was first given general instructions explaining
the meeting browser used in the experiment, the specific information need they
were meant to satisfy in the task, and a notice of the allotted time, 45 minutes,
which included both searching for the information and writing up the answer.
This amount of time was based on the result of an individual pilot task for
Condition EAM (s. 3.1). After reading the task instructions, each participant
is briefly shown how to use the browser’s various functions for navigating and
writing in the given experimental condition. They are then given several minutes
to familiarize themselves with the browser using unrelated meeting data, until
they state that they were comfortable and ready to proceed.

3.1 Experimental Conditions

There are five conditions run in total: one baseline condition, two extractive
conditions and two abstractive conditions, all of which come with audio/video
recordings and either a manual or automatic meeting transcript. Table 1 lists the
experimental conditions. The three-letter ID for each condition corresponds to
keywords/extracts/abstracts, automatic/semi-automatic/manual algorithms,
and automatic/manual transcripts.

Table 1. Experimental Conditions

Condition Description

KAM Top 20 keywords
EAM Extractive summary of manual transcripts
EAA Extractive summary of ASR transcripts
AMM Human abstracts
ASM Semi-Automatic abstracts

The baseline condition,
Condition KAM, consists of
a browser with manual tran-
scripts and a list of the top 20
keywords in the meeting. The
keywords are determined au-
tomatically using su.idf [16].
Though this is a baseline con-

dition, the fact that it utilizes manual transcripts gives users in this condition
a possible advantage over users in conditions with ASR. In this respect, it is a
challenging baseline. There are other possibilities for the baseline, but we choose
the top 20 keywords because we are interested in comparing different forms of
derived content from meetings, and because a facility such as keyword search
would likely be problematic for a participant who is uncertain of what to search
for because they are unfamiliar with the meetings.

Condition AMM is the gold-standard condition, a human-authored abstrac-
tive summary. Each summary is divided into subsections: abstract, actions,
decisions and problems. Because of the distinct “decisions” subsection, this is
considered a challenging gold-standard to match for a decision audit task.

Conditions EAM and EAA present the user with an extractive summary of
each meeting, with the difference between the conditions being that the latter
is based on ASR and the former on manual transcripts. Condition EAA is the
only experimental condition using ASR output. These summaries were gener-
ated by training a support vector machine (SVM) with an RBF kernel on the
AMI training data, using 17 features from five broad feature classes: prosodic,
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lexical, length, structural and speaker-related. The classifier was run on the four
meetings of interest, ranking dialogue acts in descending order of informativeness
according to posterior probability, extracting until we reach the desired summary
length, approximately 1000 words for the first meeting, 1900 words each for the
second and third meetings, and 2300 words for the final meeting. These lengths
correlate to the lengths of the meetings themselves and represent compressions
to approximately 40%, 32%, 32% and 30% of the total meeting word counts,
respectively. These summary lengths were based on the compression rates of the
human extracts for these meetings.

Condition ASM presents the user with a semi-automatically generated ab-
stractive summary, as described in [17]. This method utilizes hand-annotated
topic segmentation and topic labels available in the AMI corpus. In addition,
the meeting transcript was manually annotated with content items from a tax-
onomy for the domains project, meeting and product. A sentence is generated for
each meeting topic based on the annotated topic label. It may also mention the
three most frequent content items, indicating roughly what was discussed.

3.2 Browser Setup

Fig. 1. Condition AMM Browser

The meeting browsers
are kept essentially the
same in all conditions
to eliminate any poten-
tial confounding fac-
tors relating to the
user interface. In each
browser, there are 5
tabs for the 4 meet-
ings and a writing pad,
provided for the par-
ticipant to author their
decision audit answer.
As a consequence, the
participant cannot view
the meeting tabs while
typing the answer; they
are restricted to tab-
bing back and forth as needed. This was designed deliberately so as to be able to
discern when the participant was working on formulating or writing the answer
on the one hand and when they were browsing the meeting records on the other.
In each meeting tab, the videos displaying the four meeting participants are laid
out horizontally with the media controls beneath. The transcript is shown in the
lower left of the browser tab in a scroll window.

In Condition KAM, each meeting tab contains buttons corresponding to the
top 20 keywords. Pressing a button highlights the first instance of the associated
keyword in the transcript, as well as opening a list of hyperlinks to all occurrences
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of that word in the transcript. In Conditions AMM and ASM, the abstractive
summary is presented next to the meeting transcript. Clicking on a summary
sentence opens a list of hyperlinks similar to Condition KAM, linking to dialogue
acts in the transcript that support the particular summary sentence. In addition
to an abstract, Condition ASM displays three extra tabs with bullet points for
the subsections mentioned above (s. fig. 1). In Conditions EAM and EAA, the
extractive summary is displayed with each dialogue act hyperlinked to the point
in the transcript it was extracted from.

3.3 Evaluation Features

For evaluation of the decision audit task, there are three types of features to be
analyzed: answers to questionnaires, human ratings of the users’ written answers,
and features extracted from logfiles. In all conditions, we log with time stamps
mouse clicks on the transcript, the play-, pause-, stop buttons, changing tabs,
and characters entered into the typing tab.

Upon completion of the decision audit task, we present each participant with
a post-task questionnaire consisting of 10 statements with which the participant
can state their level of agreement or disagreement via a 5-point Likert scale,
such as I was able to efficiently find the relevant information, and two open-
ended questions about the specific type of information available in the given
condition and what further information they would have liked. Of the 10 state-
ments evaluated, some are re-wordings of others with the polarity reversed in
order to gauge the users’ consistency in answering.

In order to gauge the participant accomplished the decision audit task, we
enlist two human judges to do both subjective and objective evaluations. For the
subjective portion, the judges first read through all 50 answers to get a view of
the variety of answers. They then rate each answer using a 1-8 Likert-scale on
criteria roughly relating to the precision, recall and f-score of the answer, as well
as effort, comprehension and writing style (s. table 3). The results are averaged
to yield a single score. For the objective evaluation, three judges constructed a
gold-standard list of 25 items that should be contained in an ideal answer to
the decision audit task. Two of them then checked off individually how many of
the gold-standard items were contained in each participant answer. In a second
step, they identified those participant answers where their ratings diverged by
more than two points. There were 12 out of 50 ratings pairs that needed revision
in this manner. After the judges’ consultation on those 12 pairs of ratings, each
experiment was given a single objective rating.

4 Results

Post-Questionnaires. An analysis of the post-questionnaires reveals that partic-
ipants in general find the task to be challenging, as evidenced by the average
answers on questions 4, 6 and 7 in Table 2. The task was designed to be chal-
lenging and time-constrained, because a simple task with a plentiful amount of
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Table 2. Post-Questionnaire Results

Question KAM EAM EAA AMM ASM

Q1: I found the meeting browser 3.8 4.0 3.02AMM 4.3EAA,ASM 3.7AMM
intuitive and easy to use

Q2: I was able to find all of the 2.9AMM 3.8 2.9AMM 4.1KAM,EAA,ASM 3.0AMM
information I needed

Q3: I was able to efficiently find 2.8AMM 3.4ASM 2.5AMM 4.0KAM,EAA,ASM 2.65EAM,AMM
the relevant information

Q4: I feel that I completed the task 2.3AMM 3.1 2.3 3.2KAM 2.9
in its entirety
Q5: I understood the overall 3.8 4.5 3.9 4.1 3.9
content of the meeting discussion

Q6: The task required a 3.0 2.6EAA 3.9EAM 3.1 3.2
great deal of effort
Q7: I had to work under pressure 3.3 2.6 3.3 2.7 3.1
Q8: I had the tools necessary to 3.1EAM 4.3KAM,EAA,ASM 3.0EAM 4.1 3.5EAM
complete the task efficiently

Q9: I would have liked additional 3.0EAM 2.0KAM 2.4 2.6 2.7
information about the meetings

Q10: It was difficult to understand 2.1 1.5EAA,ASM 2.7EAM 2.0 2.3EAM
the content of the meetings...

For each score in the table, that score is significantly better than the score for any conditions in
superscript, and significantly worse than the score for any condition in subscript (according to t-test).

allotted time would allow the participants to simply read through the entire
transcript or listen and watch the entire audio/video record in order to retrieve
the correct information, disregarding other information sources. The task as
designed requires efficient navigation of the information in the meetings in order
to finish the task completely and on time.

Participants in condition AMM found the gold-standard human abstracts and
specifically the summary subsections to be very valuable sources of information.
One participant remarked “Very well prepared summaries. They were adequate
to learn the jist [sic] of the meetings by quickly skimming through... I especially
liked the tabs (Decisions, Actions, etc.) that categorised information according
to what I was looking for.”

Condition ASM rated quite well on questions regarding ease of use and in-
tuitiveness, but slightly less well in terms of using the browser to locate the
important information. It does consistently rate better than KAM and EAA.

For overall comprehension of the information in the meetings, extractive sum-
maries were rated the highest of all. Extractive summaries of manual transcripts
(EAM) were also rated the best in terms of the effort required to conduct the
task. Perhaps the most compelling result is that Condition EAM not only rated
the best in a question relating to having the tools necessary to complete the
task, but it is significantly better than all conditions except the gold-standard
human abstracts (according to t-test).

However, it is quite clear that the errors within an ASR transcript adversely
affect user satisfaction in such an information retrieval task. For the questions
relating to the effort required, the tools available, and the difficulty in under-
standing the meetings, Condition EAA tends to perform the worst of all, on par
or even lower than the baseline condition. It should be noted however, that a
baseline such as Condition KAM is working off of manual transcripts and would
be expected to be worse when applied to ASR. As mentioned earlier, the baseline
is a challenging baseline in that respect. Judging from the open-ended questions
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Table 3. Human Evaluation Results - Subjective and Objective

Criterion KAM EAM EAA AMM ASM

Q1: overall quality 3.0AMM 4.15 3.05AMM 4.65KAM,EAA 4.3
Q2: conciseness 2.85EAM,AMM,ASM 4.25KAM 3.05AMM 4.85KAM,EAA 4.45KAM

Q3: completeness 2.55AMM 3.6 2.6AMM 4.45KAM,EAA 3.9
Q4: task comprehension 3.25EAM,AMM 5.2KAM,EAA 3.65EAM,AMM 5.25KAM,EAA 4.7

Q5: participant effort 4.4 5.2EAA 3.7EAM,AMM,ASM 5.3EAA 4.9EAA

Q6: writing style 4.75 5.65EAA 4.1EAM,AMM,ASM 5.7EAA 5.8EAA

Q7: objective rating 4.25AMM 7.2 5.05AMM 9.45KAM,EAA 7.4

For each score in the table, that score is significantly better than the score for any conditions in
superscript, and significantly worse than the score for any condition in subscript (according to t-test).

in the post-questionnaires, it’s clear that at least two participants found the ASR
so difficult to work with that they tended not to use the extractive summaries,
let alone the full transcript, relying instead on watching the audio/video as much
as possible.

Subjective Evaluation. Table 3 shows the results of the subjective evaluation.
Condition AMM is clearly a challenging gold-standard, and Conditions EAM
and ASM are roughly comparable to each other. Subjective ratings drop off
sharply for Condition EAA incorporating ASR, particularly for comprehension
and writing style. We presume that the ASR errors cause participants in that
condition to have a lower understanding of the meeting content, which in turn
leads to lower coherence and inferior writing quality in their responses. Interest-
ingly, the scores on each criterion and for every condition tend to be somewhat
low on the Likert scale, due to the difficulty of the task.

Objective Evaluation. According to the objective evaluation, Condition AMM is
superior, with an average more than two points higher than the next best condi-
tion. The worst overall is the baseline Condition KAM, averaging only 4.25 hits
(of a maximum possible 25). However, while the worst two conditions are signif-
icantly worse than the best overall condition, there are no significant differences
between the other pairs of conditions, e.g. Condition EAA incorporating ASR is
not significantly worse than Conditions EAM and ASM. So even with an errorful
transcript, participants in Condition EAA are able to retrieve the relevant pieces
of information at a rate not significantly worse than participants with a manual
transcript. The quality may be worse from a subjective standpoint, as evidenced
in the previous section, but the decision audit answers are still informative and
relevant.

For the objective evaluation, in any given condition there is a large amount
of variance that is simply down to differences between users. For example, even
in the gold-standard Condition AMM there are some people who can only find
one or two relevant items whilst others find 16 or 17. Given a challenging task
and a limited amount of time, some people may have simply felt overwhelmed
in trying to locate the informative portions efficiently.

Browsing Evaluation. A result gleaned from close analysis of participants’ brows-
ing behaviours shows an interesting strategy of people in Condition EAA faced
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Fig. 2. Objective Scores and Post-Questionnaire Scores

with ASR transcripts. While they still frequently use the summary dialogue acts
as indices into the meeting record, they subsequently utilize the audio/video
record much more frequently than in the other conditions, presumably to dis-
ambiguate the errors encountered. This shows that, to some extent, participants
can compensate for the noisy transcript by altering their browsing strategies, us-
ing the summaries in tandem with the audio/video in order to find the relevant
items from the meetings.

The analysis of browsing behaviour also shows that participants in the gold-
standard Condition AMM are able to begin answering the question much earlier
in the task, write longer answers overall, and have more time for editing before
times expires.

Questionnaire/Objective Evaluation Correlation. Figure 2 shows the relationship
between the objective ratings and participant self-ratings for all 50 participants.
While the positive correlation is evident, an interesting trend is that while there
are relatively few people who score highly on the objective evaluation but score
low on the self-ratings, there are a fair number of participants who have a low
objective score but rate themselves highly on the post-questionnaire. A challenge
with this type of task is that the participant simply may not have a realistic
idea of how much relevant information is out there. After retrieving four or five
relevant items, they may feel that they’ve completed the task entirely. This result
is similar to the finding by Whittaker et. al [12], mentioned in the discussion of
previous work, where participants often feel that they performed better than
they really did.

5 Discussion

Although the semi-automatic abstracts got average reviews in the post-
questionnaire, both the subjective and objective evaluation rate them second
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after the gold standard for most ratings, or even better (writing style). For task
comprehension and participant effort, they come in third after EAM, however,
the difference in rating is not significant. These are encouraging results for further
research in automatic abstracting.

Overall the results are also very good news for the extractive summarization
paradigm. Users find extractive summaries to be intuitive, easy-to-use and effi-
cient, are able to employ such documents to locate the relevant information in
a timely manner according to human evaluations, and users are able to adapt
their browsing strategies to cope with ASR errors. While extractive summaries
might be far from what people conceptualize as a traditional meeting summary,
they are intuitive and useful documents in their own right.

Perhaps the most interesting result from the decision audit overall is regard-
ing the effect of ASR on carrying out such a complex task. While participants
using ASR find the browser to be less intuitive and efficient, they nonetheless feel
that they understand the meeting discussions and do not desire additional in-
formation sources. In a subjective human evaluation, the quality of the answers
in Condition EAA suffers according to most of the criteria, including writing
style, but the participants are still able to find many of the relevant pieces of
information according to the objective human evaluation. We find that users
are able to adapt to errorful transcripts by using the summary dialogue acts
as navigation and then relying much more on audio/video for disambiguating
the conversation in the dialogue act context. Extractive summaries, even with
errorful ASR, are useful tools for such a complex task, particularly when incor-
porated into a multi-media browser framework. There is also the possibility of
creating browsing interfaces that minimize the user’s direct exposure to the ASR
transcript (e.g. audio summaries with limited textual accompaniment).

6 Conclusion

We have presented an extrinsic evaluation paradigm for the automatic summa-
rization of spontaneous speech in the meetings domain: a decision audit task. In
each condition of the experiment, users were able to utilize the derived content
in order to find and extract information relevant to a specific task need. The
largely positive results for the extractive conditions justify continued research
on this summarization paradigm. However, the considerable superiority of gold-
standard abstracts in many respects also support the view that research should
begin to try to bridge the gap between extractive and abstractive summarization.

It is widely accepted in the summarization community that there should be
increased reliance on extrinsic measures of summary quality. It is hoped that
the decision audit task will be a useful framework for future evaluation work.
Intrinsic and extrinsic methods should be used hand-in-hand, with the former
as a valuable development tool and predictor of usefulness and the latter as a
real-world evaluation of the state-of-the-art.
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González, Maria-Teresa 284
Groenewegen, Peter L.M. 315

Hansard, Miles 86
Hermansky, Hynek 119
Heylen, Dirk 325
Hirayama, Takatsugu 26
Horaud, Radu 86
Huang, Songfang 214

Jaimes, Alejandro 272
Jokinen, Kristiina 38

Khalidov, Vasil 86
Kilgour, Jonathan 272, 349
Kleinbauer, Thomas 349
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